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T
he use of sensors, advanced communication tech-
nologies, and high-speed networks are collectively 
setting new standards in intelligent transportation 
systems (ITSs). These technologies impact how 

people move among places in urban environments, and 
thus shape human mobility profoundly. In addition, 
while not only shaping human movement, these tech-
nologies allow for observation and examination of hu-
man movement in R&D. The advantages that these smart 
technologies entail for transportation are numerous. For 
example, Internet of Things data can be processed and 
exploited using techniques such as machine learning to 
reveal information on customer behavior to support traf-
fic management.

Concurrent to the emergence of the aforementioned 
technologies, advances in mobile computing and position-
ing technology have paved the way for the distribution of 
real-time, personalized services in smart cities as well as 
the collection and management of a vast amount of human 
movement data [1]–[3]. Such data can be utilized, among 
others, in various domains of smart cities, including ur-
ban planning, power grid utilization, traffic control, and 
public health [4]–[6]. In particular, new possibilities are 
being extended through the general availability of mobile 
computing solutions and personal smartphones especially. 
This opens the possibility for a reliable stream of live data 
from citizens.

Sensor-rich mobile devices incorporate much of a 
user’s external surroundings. Together with the sensor 
network of a city, this creates a digital footprint of the 
user’s experienced context and is possibly a manifesta-
tion of his or hers intrinsically motivated behavior. Here, 
we refer to the concept of context as entailing everything 

that surrounds a user and gives meaning to or influences 
behavior. Among the contextual data used for personal-
ized applications, location information has received the 
greatest interest by service providers as well as academic 
research [7]–[10], leading to rapid advances in the realm 
of location-based services (LBSs), ranging from naviga-
tion and social networking to personalized recommen-
dation services. These, in turn, have become catalysts 
in the growth of areas such as telecommunications and 
transportation.

Location information is critical to understand and an-
ticipate human behavior [11]. Pervasive mobile devices 
and public sensor infrastructure simplify the tracking of 
a person’s movement, represented as a sequence of time-
stamped locations [12], [13]. Research has shown that de-
spite individual randomness, human movement is highly 
regular [14], [15]. This regularity in human movement 
can be harnessed to investigate the causes of, and make 
predictions about, human movement in urban environ-
ments [16], [17], which can be used in areas such as in 
city development or route planning [4]–[6], [18]. However, 
although spatial information is often used for destination 
predictions, fewer approaches utilize temporal informa-
tion and fewer still apply other types of contextual infor-
mation [19].

The specific purpose of transportation is to fulfill a 
demand for mobility as transportation can exist only if it 
moves people. Individual spatial-temporal information 
can potentially be gathered and shared continuously when 
people make use of public transportation. This would lead 
to valuable insights on mobility patterns and user prefer-
ences, which can be used for location prediction and rec-
ommendations, respectively [20].

Abstract—Location prediction based on contextual information is the core of a plethora of personalized location-
based services (LBSs). Several applications require the use of techniques for predicting travel destinations based on 
human movement. Network analyses of human behavioral data show how the spatial-temporal regularity of human 
movement can be harnessed for inferring human mobility patterns. However, techniques are often based on a lim-
ited number of contextual features, which may limit prediction accuracy, especially if only historical location data 
are used. Using movement data obtained from public transportation users, we investigate the utility of contextual 
features derived via the installation of Bluetooth beacons in transportation vehicles and software tools in end-users’ 
travel applications. Using a multiclass random forest classifier, we show that contextual information of a user’s past 
travel history and at journey onset goes beyond spatial information and boosts destination prediction accuracy. The 
likely destination and travel-path length obtained at journey onset can then serve as the input for a stochastic-based 
model to predict a destination based on acquired trajectory information. Here we show that previously predicted 
destinations boost the performance of a Markov chain network. Thus, various contextual information at the start of 
a journey provides information beyond the location information acquired during a journey’s progression that can 
be employed for destination prediction. These findings have strong implications for LBSs as they require accurate 
destination prediction at early stages of a journey while at the same time mitigating the privacy concerns associated 
with collection of location data.

Authorized licensed use limited to: CBS Library. Downloaded on January 23,2022 at 22:21:02 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE INTELLIGENT TRANSPORTATION SYSTEMS MAGAZINE  •  4  •  MONTH 2022

Rodrigue et al. [21] propose that the mobility of people 
can be expressed by accessibility, i.e., the capacity of a 
location to be reached by or to reach different locations. 
Accessibility is determined by the level of development of 
a transportation system to support mobility. Thus, highly 
accessible places are more frequented by people than less-
accessible locations. Overall, a well-developed system is 
linked with an array of opportunities at economic and so-
cial levels.

Location and distance are core concepts of accessibil-
ity. Location enables the estimation of the relativity of 
places in relation to the transportation infrastructure, 
which supports human movement. Similarly, distance, 
the connectivity between locations, exists if two locations 
are linked by means of the transportation infrastructure. 
Distance expresses the friction of space and locations, 
with the least friction being the most accessible. Overall, 
tracking individuals and obtaining contextual informa-
tion related to accessibility enhance understanding of hu-
man mobility. 

Location-based applications provide essential intelli-
gence to business and governments; however, certain de-
velopments urge a diminishing reliance of personalized 
applications on users’ location information. Combining 
ubiquitous positioning, motion recognition, and human 
behavior modeling, mobile devices are increasingly con-
sidered a cognitive mobile device for intelligent trans-
portation. These technological advancements have led to 
greater consciousness on data privacy with respect to a us-
er’s willingness to share personal information for mobile 
applications, including those in intelligent transportation. 
Thus, despite the enormous potential of utilizing insights 
on human movement, the continuous tracking of people’s 
location by means of pervasive technology raises concerns, 
both at the individual and national security level [22], [23]. 
In the long run, it is desirable to reduce nonessential track-
ing of individuals and tailor personalized applications to 
intermittent usage in cases when needed.

Here we investigate the importance and value of con-
textual information in destination prediction in public 
transportation. The prediction of a user’s destination based 
on detailed knowledge of its environment, both at the onset 
of travel as well as during travel progression, constitutes 
the possibility for relevant personalized applications. To 
enhance privacy and reduce the unnecessary long-last-
ing tracking of users’ sensor data, we focus our efforts on 
the possibility of predicting a passenger’s destination and 
possible route in a medium-size Scandinavian city solely 
on the available contextual information at departure and 
coarse GPS location information of the public transporta-
tion vehicle. The historical data used for destination pre-
diction contains a unique device identifier and is stored for 
only up to six months. The data set entails only the con-
textual information available during boarding and disem-

barking. Privacy concerns may arise if information beyond 
and during the trip is obtained by means of a smartphone. 
However, no GPS data are obtained via a smartphone at any 
instance of the trip. Only coarse, real-time GPS data pub-
licly available for all transportation lines is used, but col-
lection of GPS data at the vehicle level consequently occurs 
only when on board.

We investigate the importance of contextual informa-
tion of destination prediction accuracy by means of sev-
eral approaches. First, previous research has shown that 
destinations can be derived from the spatial and tempo-
ral data at the beginning of the journey [3], [24], [25]. We 
go beyond this and investigate whether the correctness 
of destination prediction is enhanced by augmenting lo-
cation and temporal information with further contextual 
data. Second, smartphone GPS data are a prime source for 
the tracking of people and predicting their future loca-
tion. Here we restrict our destination prediction to loca-
tion data at a coarse level that are solely available from 
public registries once a user boarded a public transpor-
tation vehicle. Finally, although research has often re-
garded destination and route predictions independently 
[26]–[29], we merge these two approaches by examining 
how trajectory prediction can be boosted by considering 
only the likely paths and destinations obtained from con-
text-based destination prediction.

Related Work
Although controversy exists on the homogeneity of human 
movement (e.g., in [30]), much research indicates that the 
movement of people is defined by regular spatial-tempo-
ral patterns where each individual can be characterized 
by a set of defined routes and visits to a few locations [14], 
[15], [31]. In other words, a spatial probability distribution 
underlies the reproducible patterns of human movement, 
which can be harnessed for the design of predictive sys-
tems for destination prediction in public transportation 
[28], [32], [33].

Pervasive location-acquisition technologies often rely 
on GSM, Wi-Fi, or GPS records [34]. The latter has often 
been used as the main source to reconstruct and predict 
human movement trajectories. For instance, the authors in 
[35] make use of a person’s history of visited locations and 
apply a Markov model to obtain probabilities on the likely 
path and destination of a user’s travel. Similarly, in [26], 
Alvarez-Garcia et al. apply a hidden Markov model (HMM) 
based on historical data and predict a user’s next location 
based on the start of a journey.

Providing data on spatial, temporal, and social features, 
location-based social networks enable the prediction of 
user mobility. Araújo et al. [20] introduced the a two-layer 
ensemble learner approach, the ensemble random forest 
Markov mobility prediction model, based on the random 
forest algorithm and Markovian property. The proposed 
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model achieves a higher accuracy and F1-score when com-
pared to other trajectory prediction models.

Generally, historical trajectories are used to mine hu-
man movement and develop methods for next-location 
prediction. Such methods can be based on trajectories 
from individual users or on all the available trajectories of 
larger groups examining collective movement. Chen et al. 
[16] addressed this dissociation by presenting three models 
that take the individual as well as the collective movement 
patterns into consideration, and acknowledge that move-
ment patterns are time dependent. Hence, predictive mod-
els must account for temporal variations.

In addition to differences at the individual-versus-col-
lective level, the mining of historical trajectories for des-
tination prediction is generally associated with the data 
sparsity problem. The data sparsity problem refers to the 
fact that available historical data sets do not cover all the 
possible trajectories that a user may take. To address this 
issue, Xue et al. [25] developed a method named subtrajec-
tory synthesis (SubSyn). SubSyn decomposes historical tra-
jectories into subtrajectories comprising two neighboring 
locations and connects these two subtrajectories into a new, 
merged “synthesized” trajectory. Thereby, the number of 
trajectories that can have predicted trajectories increases, 
and thus, the model predicts destinations for up to 10-times 
more query trajectories than a baseline algorithm. Krumm 
and Horvitz [29] developed a method called predestination, 
which uses a driver’s history of destinations as well as the 
data collected during travel progression for destination 
prediction. In particular, although much work assumes a 
closed-world network of users not visiting new locations, 
the latter work leverages an open-world methodology, also 
taking into account the likelihood of users visiting previ-
ously unobserved locations based on trends in the data.

Generally, additional external information may improve 
the accuracy of predicted destinations. It is assumed that 
the external features of certain traveling patterns are as-
sociated with greater possibilities of reaching a certain 
destination than others. Although historical movement pat-
terns may be useful to understand the movement of users, 
they do lack contextual information to better understand 
the intended activities. Such contextual information can be 
related to, for example, road conditions and driving habits 
[36], but temporal aspects such as time of the day and day 
of the week are also valuable contextual features that can 
complement historical trajectory data [3], [24]. Wu and Li 
[3] performed a detailed investigation of the problem of an-
notating contextual semantics to mobility patterns, i.e., as-
sociating the mobility records in a person’s trajectory with 
relevant surrounding context. The authors used spatial 
context and annotated the venue a user was visiting at a 
defined location.

In addition to the use of probabilistic models, machine 
learning methods have been used to predict a user’s desti-

nation. Recently, Zhao et al. [28] presented a bidirectional, 
long short-term memory network to model the sequence of 
visited locations. By implementing an attentional mecha-
nism, meaningful locations of a route that have a strong 
relationship to the possible destination were defined and 
given more impact on the eventual prediction of the desti-
nation. Using various machine learning methods to predict 
the destination of a user based on smartphone GPS data 
using information such as location information 5 min prior 
to departure, time of the day, and the day of the week, the 
authors in [27] reveal that a decision tree-based algorithm 
proved to be the most accurate resulting in 96% accuracy 
in destination prediction.

Overall, the lack of data on identical trips, visits to 
different destinations under the same context, or a tra-
jectory history of too-short time spans may limit predic-
tion accuracy. Furthermore, prediction techniques will 
not be adequate if the starting location of a trip is a new, 
unique location, i.e., no historic data on movement history 
are available. To circumvent these difficulties, Huang et 
al. [37] investigated the relationship between activity and 
location changes. The authors demonstrate that activ-
ity transitions are more regular than location transitions 
and developed an HMM-based predicting approach, which 
takes users’ activity transitions into account. Based on the 
next activity, the authors could derive the next location of a 
path in a much smaller candidate destination set, reaching 
87% accuracy.

Similarly, Xia et al. [38] addressed the problem of loca-
tion imprecision by adding semantic information added 
through stay-point detection and semantic-place recog-
nition. The aim was to predict next-personally semantic 
places with historical visiting patterns derived from mo-
bile device logs. Using a decision-tree-based algorithm 
and a Markov model, the authors examined differences in 
prediction accuracy and found that the decision-tree-based 
algorithm is superior to a Markov model.

Although previous studies often aimed at separat-
ing the destination- and route-prediction problem, Imai 
et al. [24] sought to converge these two techniques. The 
authors approached the tradeoff between timing and ac-
curacy by combining path predictions using contextual 
information at the start of a journey with trajectory pre-
diction. Thus, an initial prediction of the destination was 
made and updated as the trip progressed. This led to su-
perior prediction accuracy when compared to applying 
techniques independently.

Thus, relying on the regular movements of people, vari-
ous analytical tools have been used to derive predictions 
on future locations of public transportation users. From 
related work, we extract the insight that merging various 
approaches using contextual information is not only fea-
sible, but also required, for optimal destination and route 
prediction.
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Methodology

Scenario
In this section, we provide details on the scenario for the 
aforementioned research as well as our chosen approach 
for data collection and analyses. A middle-sized Scandina-
vian city (with an estimated 150,000 inhabitants) provides 
several modes of public transportation, including bus, 
train, tram, and city ferry. These public transportation ve-
hicles are equipped with hardware transmitters that enable 
the assignment of users to a certain public transportation 
vehicle. This enables the collection of data regarding the 
user’s transportation usage and can be supplemented with 
publicly available real-time data of the public transporta-
tion vehicle. The collected contextual data are used here 
to derive the probability of arriving at a certain destina-
tion based on historical travel patterns. Thus, at the early 
stages of travel, contextual information can be utilized to 
predict the destination of a public transportation user.

Data Collection
Public transportation vehicles are equipped with Blue-
tooth beacons that broadcast their identifiers to the mobile 
phone of a passenger in proximity. The passengers make 
use of a ticketing application with an installed software 
development kit that allows for the collection and sending 
of coarse contextual information. The origin and destina-
tion of a journey are given by the identification of users 
through the Travel Pass mobile app. The installed beacons 
on public transportation vehicles pick up signals from de-
vices on board and ping them at regular intervals. The 
beacons are installed in the ceiling of the vehicles, and 
depending on the model at strategic places, for instance, 
in the front, middle, or back. The location and time of a 
journey’s start can be derived from the beacon’s signal 
strength. Thus, for the duration of the entire trip (given 
the strength of the beacon signal), a person is associated 
with a certain transportation vehicle and contextual in-
formation, such as the time and location of boarding and 
disembarking (see Figure 1).

Bluetooth is given access once customers have given 
consent in the travel application. As long as the user keeps 
Bluetooth turned on, the consent is valid and tracking is 
available. The user can at any time withdraw the consent, 
turn Bluetooth off, or request to have profile data deleted. 
Given the architecture of the travel application solutions, 
connectivity issues are generally not an interfering issue 
because information is collected locally on the phone and 
stripped of any personal-related information before being 
submitted to the cloud’s back end for analysis. Within the 
cloud, passenger data are matched with more accurate lo-
cation data (GPS) of public transportation stations record-
ed in a national registry for public transportation. From 
the largest to the smallest level, the country is divided 
into counties, municipalities, and basic statistical units 
(BSUs). The country is divided into approximately 14,000 
BSUs, which are geographically coherent, homogeneous 
(with respect to the nature and basis for economic ac-
tivities, conditions for communications, and structure of 
buildings), and temporally stable units, which are useful 
to work with and represent regional statistics. Overall, 
BSUs aim at a more efficient statistical basis for analy-
sis on regional and municipal levels for management and 
planning purposes. Because the aforementioned condi-
tions must be fulfilled, BSUs are measured in squared 
kilometers may vary in size. Notably, location data are 
represented by the presence of the passenger within a 
broader area of the municipality (i.e., BSU) rather than 
precise GPS coordinates. 

The final data set thus contains location information of 
the journey’s start and end location, the time stamp of the 
start and end of the journey, the transportation vehicle’s 
ID, and station location data. Overall, we base our analyses 
on data collected from 26,088 customers during a period 

(a)

(b)

FIG 1 A scenario. The information available at the start of the journey can 
be obtained by linking a passenger to a public transportation vehicle by 
means of a software development kit embedded in a travel application 
and Bluetooth beacons, whose identified signal assigns a passenger to a 
transportation vehicle (b). The assignment of a passenger to a vehicle 
allows a more precise trajectory tracking by matching passenger 
information with real-time public transportation location data obtained 
from a government-owned transportation company in the cloud (a).
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of approximately 175 days (Table 1). When compared to a 
publicly available data set comprising the number of travel 
searches served by an open national journey planner ap-
plication programming interface acting as a back-end sys-
tem in several major journey planning services (developer 
.entur.org/mobility-trends-covid-19), we find that daily 
travel counts of our data set and travel searches (as a proxy 
of national mobility) across the country are highly similar. 
Here we regard the quantity of travel route searches as a 
proxy for human mobility within the last months.

Data Preprocessing and Feature Engineering
As a part of the extract, load, and transform (ETL) pro-
cess, raw passenger data are uploaded to a cloud database, 
where they undergo further prepossessing. A journey is 
defined as a set of trips with an intent. A journey can con-
sist of multiple trips, which in total define the entire jour-
ney. Because we often cannot find the intent of a journey 
from location events alone, we use the time spent in a BSU 
to define a journey. When a user stays for more than 15 
min in one place, we consider this the origin for the next 
journey. Naturally, we use the same time measure for the 
destination. Once a user arrives at a location and stays for 
more than the 15-min parameter, we 
consider this location to be the desti-
nation of the journey. Following the 
ETL process, the data are organized 
and cleaned using Python in a Mi-
crosoft Azure Databricks environ-
ment. Based on obtained passenger 
information and real-time vehicle 
data, we acquired several contextual 
features that are either available or 
can be achieved by processing the 
data set (see Table 2).

Data Analysis
We base our analyses on users out 
of the 26,088 who had a sufficient 
amount of movement within the pe-
riod of data collection. This condi-
tion is met if two requirements are 
fulfilled. First, the user must have a 
journey count larger than the medi-
an journey count across passengers 
(i.e., 101 journeys in 175 days). Sec-
ond, the selected journeys’ destina-
tions must have been visited several 
times (i.e., lay above the first quar-
tile/0.05% of all a user’s journeys 
that a specific destination was the 
final stage of the trip). This led to a 
data set of 3,002 users that use public 
transportation frequently.

Supervised Learning
We applied a supervised learning technique to predict the 
destination of a user based on contextual features of past 
trips. We used a tree-based learning algorithm: the mul-
ticlass random forest from Python’s scikit-learn library. 
The random forest classifier is built using several decision 
trees in an ensemble method (a bootstrap aggregation, i.e., 
additional data in the training stage were generated to 

Statistics Value 

Time frame of analyzed data 23 February 2021–18 August 2021

Size of data set 497 MB 

Number of customers 26,088 (20% of city population> 
age 10)

Average number of journeys per 
customer

38 

Average distance of journey 4,918 m 

Most-frequented day Tuesday 

Least-frequented day Sunday 

Table 1. The descriptive statistics.

Feature Description 

Hour of the day Full hour of the day at the start of the journey 

Day of the week Day of the week on which the journey took place

Journey origin The place, defined by the BSU, where the journey started 

Distance Linear distance as measured by the percentage of traversed diameter of the urban area

Transport mode Type of vehicle used in the first trip of the journey: bus, train, or city ferry 

Traveler type Categorization of the passenger based on past transportation mode use 

If the passenger has only used a bus in the past, then the passenger is a bus-only traveler

Several categories exist: bus only, train only, city ferry only, bus/train, bus/ferry, train/
ferry, and bus/train/ferry

Outward/inward 
flow 

Measurement that defines a departure and destination location/station as a station where 
more users depart from rather than arrive at or vice versa

Home-work 
location

Several conditions define the rough estimate of work and home location

Home location: The start of the journey must take place between 5:30 and 9:30 a.m. The 
end location of a journey is the last visited location between 3:30 p.m. and 12 a.m. The 
end location of a journey must be the final destination in at least 33% of all journeys 
during the collected time period. 

Work location: The end location of a journey must be visited between 5 and 10 a.m. 
The previous end location must be a start location between 2:30 and 5:30 p.m. The 
end location of the journey must be a destination in at least 15% of the journeys in the 
collected time frame.

Hotspot All stations whose total departure/arrival journey count density is larger than the average 
across all stations

Distance Linear distance of the journey (in meters)

Table 2. A description of contextual features. Note that in the “Human Mobility Patterns for 
Destination Prediction” section, only “Hour of the Day,” “Day of the Week,” and “Journey Origin” 
are used for destination prediction.
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 decrease the variance of the prediction model). A Gini in-
dex was used as an attribute selection indicator to generate 
individual decision trees. The most-voted class of all trees 
was chosen as the final solution. The data were split into 
an 80:20 training-versus-test set. The independent cat-
egorical variables (e.g., day of the week) were recoded into 
numerical representation without an arbitrary ordering 
by means of one-hot encoding. The dependent variable of 
possible destination locations was label encoded. We used 
the F1-score, a harmonic mean of precision and recall, as a 
statistical prediction of accuracy where

measure precision recall
precision recall

F 2 )
)

- =
+

and where

  
 

precision true positive false positive
true positive

=
+

and

  
 

.recall true positive false negative
true positive

=
+

The final F1-score is obtained by microaveraging (bi-
ased by class frequency), given the nonnormal distribution 
of output classes. To choose the optimal set of hyperpa-
rameters for the random forest, we used scikit-learn’s 
RandomizedSearchCV function. For this, we first created 
a parameter grid from which to sample during fitting. On 
each iteration, the algorithm chose a different combina-
tion of hyperparameter features. We choose 100 different 
combinations and set the number of folds to use for cross 
validation to three.

The feature importance was calculated with Python’s 
scikit-learn’s built-in function, which provides the impu-
rity-based feature importances (Gini importances). As a 

baseline, we selected the most common destination of the 
passenger and evaluated the overlap of actual predicted des-
tination with setting the predicted destination to the most 
common destination found with a user’s historical data.

Statistical Modeling
We used a stochastic-based Markov chain model [39] to 
obtain a probabilistic description of various possible next-
location visits of a user’s trajectory, which is composed of 
dependent random events (Figure 2). Specifically, a state 
in the Markov model corresponds to a current location of a 
station as defined by latitude and longitude coordinates of 
the transportation vehicle, and state transition corresponds 
to moving from one station to the next. Thus, the probability 
of the next likely location of a trajectory can be obtained by

 .transition probabilityPr Pr_ _next location current location#=

Our Markov model is characterized by a state space, a 
transition matrix describing the probabilities of particu-
lar transitions, and an initial state across the state space. 
Based on a user’s past movement, we have a set with sev-
eral states of

, , , ,S S S S Sr1 2 3f=

where each state described one location in a movement 
grid of the user. The journey starts at one of these process-
es and as the user travels, the state moves from one state to 
another. The movement progression from one state to the 
next thus depends on the probability that a user is moving 
from that state to the other and can be described by a sto-
chastic probability matrix:

[ , , , , ],  .P P P P P P 1wherer i
i

r

1 2 3
1

f= =
=
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FIG 2 The schematic of a grid world. (a) A 3 4#  grid world, where each grid represents the latitude-longitude location of a public transportation station. 
The Markov chain has 12 possible states. The colored lines indicate the historical mobility of a user traveling from the origin (gray) to the destination 
(purple). Here state refers to the latitude-longitude location of a public transportation station. (b) The transition matrix where each state in the state 
space is included once as a row and once as a column. Each cell in the matrix displays the probability of transitioning from the row’s state to the 
column’s state. (c) An illustrative trip a user is undertaking to derive the probability of starting at [1,1] and arriving at location [3,4] after a trip with two 
stops: ( . . ) ( . . ) . .2 4 1 2 2 4 0 4 0 4 1 3 4 1 3 3 4 0 4 0 1 0 561 " " " " " " " "# # # #= = + = = =  Thus there is a 56% chance that the user is will 
travel to location [3,4] after two stops, if the user started out in location [1,1].
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The probability of transitioning to any of the locations can 
be represented by transition probability matrix P, as indi-
cated in the following equation. The probability of travel-
ing from i to j is given by pij  (ith row and jth column) in the 
transition probability matrix P:
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Within the transition probability matrix, the probability 
of moving to the next state depends on only the current lo-
cation and not where the user has been before and can be 
described as

( , , , )
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X x X x X x X x
X x X x

n n n

n n n
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= = = =
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+

+

where the probability of Xn 1+  depends only on the prob-
ability of ,Xn  which precedes it. 

The size of the Markov chain depends on each user’s 
unique visited locations, thus each transition probability ma-
trix per user has N possible states, where (I, J) of that matrix 
is the probability of transitioning from state I to state J, i.e., 
transitioning from location I to J. The product of subsequent 
matrices describes the probability of the likely destination.

We applied our Markov model on two scenarios for op-
timal comparison. First, we used the location of where the 
journey began as initial state and used the initial state/loca-
tion and transition probability matrix to derive the probabil-
ity of arriving at the most visited location. Here the transition 
steps (visits of different locations) are defined by the average 
number of station visits of a journey, given the starting state/
location. Second, we used as the initial state the location of 
where the journey began, and used the starting state/location 
and transition probability matrix of arriving at the predicted 
destinations previously revealed by supervised learning. The 
steps (visits of different locations) are defined by how many 
steps were taken/stations were visited to reach that destina-
tion. Following the law of large numbers, we estimate the 
probability of reaching a defined destination by iterating 
(10,000 times) through the transition probability matrix. Fi-
nally, statistical testing was done using Python’s library used 
for scientific and technical computing (SciPy). The values are 
displayed as mean ± standard error of the mean.

Results

Regular Patterns Underlie Human Mobility at  
Individual Levels
Despite large differences in individuals’ mobility behavior, 
research has shown that individual trajectories in urban en-
vironments are predictable with high accuracy [14]. Human 
movement is goal directed and often restricted to a select 
number of origins and destinations. This makes it possible 

to determine humans’ forthcoming travel destinations. To 
derive a prediction method of users’ destinations, we first 
set out to gain a better understanding of the users’ mobility 
behavior, both at the level of the individual as well as at the 
group level. In particular, we wondered how human mobil-
ity in public transportation is shaped by spatial-temporal 
features such as location or day of the week. For this, we 
analyzed the location (as defined by the center of the BSU, 
i.e., the subdivision of the municipality a user is located at) 
and time stamp distributions of users’ journeys. We found 
that the origin and destination of a total 26,088 public trans-
portation users were dispersed across the metropolitan area 
within the time period of 175 days [see Figure 3(a)]. We can 
observe at least two clusters of condensed journey origins 
and destinations. Next, we randomly  selected four of the 
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FIG 3 Spatial-temporal mobility at the individual and population levels. 
(a) A scatterplot showing the spatial distribution of journey origins of 
journeys undertaken by all users. (b) The same as (a) but for journey 
destinations. (c) A line plot showing the distribution of journeys across 
users displayed by hour of the day and day of the week.
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26,088 users and observed that travel patterns are restricted 
to a few selected locations at the individual level [see Fig-
ure S1(a) in “User’s Journey Counts Are Dependent on Day 
of the Week and Month of the Year”], thus highlighting the 
individual’s relevant location to which they restrict their 
travel. In addition to the spatial level, at the temporal level 
we observed that human mobility follows highly regular 
patterns both at shorter time scales (hours and week days) 

[see Figure 3(b)] as well as at longer temporal scales (weeks 
and months) [see Figure S1(b) and (c)]. Notably, the spatial 
mobility of individuals is influenced by the temporal con-
text, i.e., a person’s travel behavior is different depending 
on the day of the week (see Figure S2 in “Users Display Dif-
ferent Origin-Destination Patterns”). Thus, individual users 
display distinct travel patterns at a spatial-temporal scale.

Human Mobility Patterns for Destination Prediction
The use of spatial-temporal information as outlined in the 
previous section has been shown to be suitable for predic-
tive analyses of human mobility patterns [24]. Therefore, 
as the next step, we set out to investigate to what extent 
we can infer the destination of public transportation users 
based on gathered spatial-temporal information. As can be 
seen from Figure S3(a) in “The Quantity of Journeys a User 
Is Undertaking Is not Related to Prediction Accuracy,” pub-
lic transportation users selectively visit certain locations 
as the majority of users have a maximum of 20 unique 
destinations they visited within the last 175 days (mean = 

11 unique destination visits). To determine which of these 
destinations a user is going to visit, we used available spa-
tial information of the journey’s origin (i.e., the BSU in 
which the departure station is located) as well as temporal 
information (hour of the day and day of the week). Using a 
random forest classifier for destination prediction, we ob-
tained an F1-score across all customers (n = 3,002) of 0.68 
(± 0.003) [see Figure 4(a)]. The F-score was significantly 
higher when compared to baseline (0.4 ± 0.002) (p <0.05, t 
= 8,784.30) [see Figure 4(b)]. Notably, the accuracy of our 
ensemble method did not correlate with the overall num-
ber of journeys taken by the users [see Figure S3(b)]. Next, 
we tested an optimized random forest classifier on 100 
randomly selected customers [see Figure 4(c)] to maximize 
prediction accuracy. We found that our optimized random 
forest classifier reached an average F1-measure of 0.69  
(± 0.002) [see Figure 4(d)]. Finally, we evaluated the impor-
tance of the features, i.e., location of the BSU’s origin, hour 
of the day, and day of the week. We found that for most cas-
es, the feature of origin location scored highly. It was the 
highest-ranked feature in n = 2,662 users [see Figure 4(e)]. 
Hour of the day was the second-highest ranked feature, 
while day of the week was not significant. In summary, 
using an ensemble learning method, the final destination 
of a passenger’s journey can be predicted based on basic 
spatial-temporal information with fairly good accuracy.

Contextual Features From a City’s Station  
Network and People’s Past Behavior
There is a consensus that incorporating more contextual 
data allows for better learning, however, the use of addi-
tional contextual features for destination prediction is not 
predominant [19]. We hypothesized that the prediction 
of human mobility behavior is improved when including 
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additional relevant contextual beyond the location of ori-
gin, hour of the day, and day of the week. Thus, as a next 
step, we set out to derive more contextual data based on 
 spatial-temporal information available in the data. Broad-
ly, context can be divided into that which is specific to the 
individual user (e.g., the mode of transportation a user is 
using) as well as that which is defined by the city’s popu-
lation where an individual contributes to the overall con-
textual feature (e.g., hotspots of human movement). With 
respect to the latter aspect, we can obtain information on 
which transportation mode the user is using at the onset of 
the trip (based on matching a user’s ID and received signal 
from an installed beacon with the vehicle’s ID), or by tak-
ing past information into consideration, which transpor-
tation mode the user is generally using [see Figure S4(a) 
in “Additional Contextual Information Suitable as Input 
for Destination Prediction Models”]. Furthermore, we can 
get information on the user’s average traveled distance to 
receive a better approximation of a destination [see Fig-
ure  S4(b)]. In particular, we can analyze whether a pas-
senger is commonly traveling within the metropolitan 
area (i.e., not traveling farther than the diameter of the 
metropolitan area) or commutes beyond, which is often as-
sociated with a certain type of transportation vehicle (e.g., 
short- versus long-distance buses).

Additionally, based on additional departure and arrival 
information, the likely home and workplace of the passen-
ger can be inferred (see Table 2). In addition to contextual 
features related to the individual user, we can derive con-
textual features that are defined by the collective behav-
ior of people in an urban environment [40]. For instance, 
whether an origin or destination station is a hotspot can 
be determined, which may assist in determining the prob-
ability of a user arriving at a certain destination. We ob-
serve in our data set that within the city, several clusters of 
common origins [see Figure S4(c)] as well as destinations 
[see Figure S4(d)] exist. The origin and destination clusters 
largely overlap. Thus, the majority of people tend to travel 
the city by starting and ending a journey in a hotspot. In 
contrast, at the level of individual stations, we found that 
some stations have more inward than outward passenger 
flow or vice versa, i.e., the efflux and influx of passengers 
is not in balance [see Figure S4(b)]. Thus, several contex-
tual features exist at individual and group levels. These 
features can be utilized to create prediction models that 
conform to the urban environment at hand.

Additional Contextual Information for Next-Place Prediction
As a next step, we aimed to supplement spatial-temporal 
features (see Figure S4) with additional contextual infor-
mation (see Figure S4) using our multiclass random forest 
classifier. When incorporating contextual features, the av-
erage F1-score of all customers is 0.81 ± 0.002 [Figure 5(a)], 
reaching significance when compared to the baseline [p 

<0.05, Figure 5(b)]. We found that the most important fea-
tures for destination prediction based on all contextual in-
formation available is the transportation mode used at the 
onset of the journey (n = 708) and the hour of departure 
(n = 299) [see Figure 5(c)]. At lower rankings, the origin 
location feature gains in importance, while transportation 
mode and hour of departure lose significance. The trav-
eled distance of past journeys remains relatively constant 
[see Figure 5(c)]. As the next step, we performed a ran-
dom search to optimize our predictions on 100 randomly 
selected customers. The F1-measure in the absence of 
hyperparameter tuning reached, on average, 0.82 ± 0.013 
[see Figure S3(c)], while parameter optimization led to a 
similar average F1-score of 0.81 ± 0.013 [see Figure S3(d)]. 
In summary, incorporating additional contextual informa-
tion boosts destination prediction accuracy.
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FIG 5 An implementation of contextual information for destination 
prediction. (a) A boxplot showing next-place prediction accuracy with a 
random forest classifier for individual journeys. (b) The same as (a) for 
baseline prediction accuracy. (c) A histogram displaying the distribution 
of the top-10 features for all customers.
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Route Prediction Using Destination Contextual Information
Destination and trajectory predictions are often being in-
vestigated and applied independently. Therefore, we exam-
ined to what extent contextual predictions of destination 
prediction can enhance trajectory predictions. A trajec-
tory prediction often makes use of stochastic-based mod-
els such as Markov chains, which help analyze dependent 
random events, i.e., future events depend only on the pres-
ent event, not the past event. To examine the possibility 
of merging destination and trajectory prediction models, 
we used a Markov chain model on station location data ob-
tained during the morning rush hours during weekdays. 
We used GPS data from a public transportation database to 
circumvent the use of GPS data from users’ smartphones.

In the first step, we used the most common destination 
and its rank location of a user’s history of travel trajecto-
ries to determine the step size needed to derive the overall 
probability of a travel path and its destination, as shown 
in Figure 2(a). Using this information, we calculated the 
probability of reaching that destination [see Figure 2(b) 
and (c)], which was low [see Figure 6(a)]. In comparison, 
the likely destination probabilities of the same users us-
ing our random forest classifier trained on contextual 
information at the beginning of the journey was signifi-
cantly higher, as depicted in Figure 6(b). However, a tra-
jectory prediction based a station’s location data could be 
enhanced by using the obtained likely destinations from 
contextual destination prediction as the likely destination 
input to the Markov chain model due to better knowledge 
of the step size needed to arrive at the destination, as pre-
sented in Figure 6(c). Although the increment in accuracy 
is low, the predicted destination and its rank of how many 
public transportation stops are required to reach it en-
hance our estimate of the probability obtained with our 
Markov chain model. Overall, the contextual informa-
tion at the start of the journey is a stronger predictor of 

likely destination, rather than using location data in an 
incremental manner to create a likely estimate of travel 
destination. However, predicted destinations based on 
contextual information available at the onset of the jour-
ney can enhance trajectory prediction

Discussion
Here we provide a method for destination prediction rely-
ing on contextual information obtained in an ITS by means 
of users’ mobile devices, Bluetooth radio transmitters in-
stalled on public transportation vehicles, and public reg-
istries of public transportation vehicles’ location. We have 
shown that contextual information at the onset of a trip is 
a crucial predictor of destination location. In particular, 
the spatial-temporal context at a trip’s onset as well as the 
type of transportation mode used are the most important 
features for destination prediction. This acquired infor-
mation on predicted destination at travel onset converted 
into route prediction improves trajectory prediction based 
on the public transportation vehicle location data obtained 
from a public registry.

The focus of our proposed approach is on the indi-
vidual user rather than the transportation vehicle, for 
which real-time information of route progression and 
stop locations are available. Ultimately, in our proposed 
approach, once the customer boards the transportation 
vehicle, the final destination of the user is predicted by 
means of the present contextual information using a 
tree-based model, whose output then acts as input for a 
Markov chain model to further refine the prediction dur-
ing travel progression. In the future, this approach may 
be complemented with micromobility data to achieve 
precise route predictions between the start and end loca-
tion of a user, rather than the start and end location of 
a user’s public transportation trip. Although there exists 
information that one can easily infer from a trip (origin 

location, day of the week, or time of 
the day) this provides only a static 
approach and limits the accuracy 
of destination prediction. Ideally, 
destination prediction should be 
continuously refined as the travel 
progresses and more information 
is acquired, such as knowledge of 
transportation mode as revealed 
by algorithms applied on gathered 
smartphone sensor data. This ad-
ditional information would then 
boost the destination accuracy. In 
other words, significant points, i.e., 
frequently visited locations during 
a round trip can be used to infer 
the destination, as in summation, 
these points represent a trajectory. 
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FIG 6 A Markov chain analysis for trajectory prediction. (a) A boxplot showing the product of next-
location probabilities to obtain a likely travel destination estimate. (b) A boxplot showing the probability 
of travel destination obtained by a multiclass random forest classifier. (c) The same as (a) but 
incorporating the likely destination and travel-path-length form (b) into the Markov chain analysis.
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However, this approach is hampered in the case of route 
changes due to congestion, route work, and so on. Thus, 
a high accuracy of destination prediction is required at 
early stages of travel, which we would have shown can be 
overcome with our suggested approach.

The challenges related to destination prediction often 
revolve around three issues. First, data sparsity, i.e., the 
available historical trajectories are far from being able to 
cover all possible trajectories needed for highly accurate 
destination prediction. Related to this, although the mere 
use of historical trajectories allows for the extraction of pat-

terns and activities, they lack the contextual semantics re-
quired for understanding the intended activities of the user. 
The second issue deals with the collection and combination 
of various data sources related to human behavior, which is 
increasingly being discussed in the context of user privacy. 
The third issue concerns the longevity of human mobility 
patterns and the applicability of destination prediction on 
gathered mobility data, which may be subject to change 
over time, e.g., when a person resides in a new location.

Using location data as the main source of a user’s con-
text is often related to matters such as privacy concerns, 

User’s Journey Counts Are Dependent on Day of the Week and Month of the Year.
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FIG S1 (a) Joint plots showing the density of origins/destinations of journeys for four individual users. (b) Violin plots showing the distribution of 
the sum of journeys each user has undertaken per day of the week. (c) A line plot showing the total journey count per day across 175 days.
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budget constraints, or limited availability [35], [41], [42]. 
As a consequence, available trajectories are limited not 
sufficient to cover all possible query trajectories, which 
in turn negatively impacts destination predictability. 
Several methods have been put forward to overcome this 
challenge. For example, Wang et al. [43] examine the 
changes in distances from sampling locations to a final 
destination on a trajectory instead of searching similar 
trajectories in a sparse data set. The underlying idea is 
that the shorter the distance, the closer the selected loca-
tion is to the destination, and thus the higher the prob-
ability is of reaching the destination. Alternatively, Xue 
et al. [44] propose a method called SubSyn, which allows 
for an expansion of a trajectory data set by decomposition 
of a trajectory into the subtrajectories of two adjacent lo-
cations, which are then merged again to create several 
synthesized trajectories. 

Enhancing User Privacy by Focusing on Sparse Location  
Data of Public Transportation Vehicles
In our method, we made use of coarse location information 
at the onset of a trip, as represented by an ID of a subdivision 
of a municipality at the onset of a trip. We examined whether 
this information, in combination with additional contextual 
features (such as time of the day, the used transportation 
type, whether the origin is a city’s hotspot, or whether the 
user is departing from home or work), is sufficient for des-
tination prediction. We investigated the applicability of con-
textual destination prediction based solely on the information 
available at a trip’s onset by comparing it to trajectory pre-
diction based on a spatial-temporal sequence of GPS data of 
the public transportation vehicles during a trip’s progression. 
However, we found that with our Markov chain analysis, des-
tination prediction based on location information during trip 
progression is not superior to destination prediction based on 

Users Display Different Origin-Destination Patterns.
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contextual features at the onset of a trip. As a matter of fact, 
the performance of our Markov chains was worse but can be 
marginally improved by restricting possible destination and 
trip lengths to the destinations and trip lengths predicted 
by our random forest classifier. Although the Markov chain 
trajectory prediction was not stellar, we provide a novel solu-
tion of destination and trajectory prediction. In particular, we 
have solely used the coordinates of the public transportation 
stations where the user is at a given timepoint as inputs for 
trajectory prediction. This approach may entail complica-
tions related to data sparsity given that the sequence of a trip 
is based only on the location of public transportation stations, 
however, this can be overcome with a higher sampling of lo-
cation points. Ultimately, we opted for this novel approach to 
show the possibilities that lie within trajectory and destina-
tion prediction by the use of publicly available location infor-
mation of a public transportation vehicle a user is in.

Replacing Movement Trajectories With Contextual  
Information at Trip Onset for Destination Prediction
To minimize the use and collection of personal informa-
tion over longer time intervals, we have constrained our 

destination prediction based on contextual information 
that was solely available at the onset of a public transporta-
tion ride. In particular, we have used both spatial-temporal 
information of the user (place, time of the day, and day of 
the week) as well as contextual information, such as trans-
portation mode (bus, ferry, and train), dynamic properties 
of the city, and the BSU that might represent the home/
work location. Little research exists that relies on (tem-
poral) contextual information beyond spatial information, 
and even less work has incorporated the mode of trans-
portation into destination prediction [19]. We obtained 
this information by matching the assigned passenger on a 
transportation vehicle to the location data, thereby receiv-
ing location information only when a user is matched to a 
certain transportation vehicle. In fact, several approaches 
exist to infer a user’s mode of transportation based on mo-
bile phone sensors with high accuracy (>90%) [45], [46]. 
However, these approaches often require that users opt-in 
for the collection of sensor data of their mobile devices. 

In line with the fact that people restrict their move-
ments to selected pathways and stations [14], [31], and 
that they possibly use the same transportation type to 

The Quantity of Journeys a User Is Undertaking Is Not Related to Prediction Accuracy. 
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cover selected distances, we show that transportation 
mode is a particularly strong predictor of a user’s des-
tination. A further measure we selected to decrease the 

use of personal information while at the same time boost-
ing the accuracy of destination prediction by our random 
forest classifier is the use of features of a city. These 

Additional Contextual Information Suitable as Input for Destination Prediction Models.
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 features are collectively being defined by the movements 
of its inhabitants. For example, the changes in mobility 
of users during the day has an impact on the overall ur-
ban environment [47]. It has been shown that the spatial 
structure of cities is dynamic, displaying both stabil-
ity as well as variations over time during the day [40]. 
For example, the persistence of hotspots, i.e., the physical 
location of a public transportation station showing an ac-
cumulation of departures and/or arrivals, can be perma-
nent or intermittent depending on location and time of 
the day. By these means, we merge individual and col-
lective movement patterns for destination prediction, as 
has previously been performed [48]. However, although 
spatial-temporal information  entails some context and 
possible causes of humans’ intentions to move, it is still 
limited. One way of enhancing our knowledge of users’ 
intentions is to incorporate semantic information [38].

Longevity of Human Mobility and the Effect of  
Temporal Change
Human movement appears to be random from an out-
sider’s perspective, however, human movement follows 
strict, regular patterns. As mentioned in the previous sec-
tion, one of the prime investigations into human mobil-
ity showed that people restrict their movements among 
a few selected locations at high temporal regularity, e.g., 
the daily commute to and from the workplace [31]. In 
stark contrast to work published prior to the outbreak of 
the COVID-19 global pandemic in 2020–2021, the findings 
described here are based on mobility data collected in a 
period dominated by mobility restrictions. Nevertheless, 
even though the mobility of people and their use of public 
transportation has been reduced, we show that accurate 
destination prediction is possible under these circum-
stances. Depending on national guidelines, on the one 
hand, a reduced set of public transportation data might 
consist predominantly of people commuting to and from 
work. This would increase the regularity of travel pat-
terns. On the other hand, people worked mainly remotely 
when possible and used public transportation for other ac-
tivities. Although it is challenging to derive trip intentions 
based solely on the available information, we assume that 
the trip intentions described here mainly comprise trips 
to and from work, where it was not possible to work from 
home, or trips undertaken for social/leisure activities. 
However, once restrictions are removed, people will most 
likely increase their public transportation usage, which in 
turn may transform the collected trajectory patterns on 
which our predictions may not hold any longer. 

The interplay of spatial-temporal context has been 
investigated by Chon et al. [49]. The authors found that 
spatial and temporal context are tightly connected, i.e., a 
location-dependent predictor is better than a location-in-
dependent predictor for predicting the temporal behavior 

of individual users. A further challenge of route and des-
tination prediction based on contextual data might be that 
users have different intentions, leading to various move-
ment patterns at different spatial and temporal scales [48]. 
Destination prediction models must be concerned with 
these. For instance, commuters have a more stable trajec-
tory history over time, while tourists are more exploratory 
in their mobility behavior, and the movement patterns can 
change often and quickly in short periods of time.

Conclusions
Overall, we have shown the importance of contextual in-
formation at early stages of travel for the accurate predic-
tion of a journey’s destination. In particular, we considered 
contextual information related to individual users as well 
as information that is defined by the collective behavior of 
a city’s inhabitants. We found that transportation mode is a 
critical determinant of future whereabouts of users. Fur-
thermore, we have demonstrated that obtained predictions 
from contextual information enhances trajectory predic-
tions. Future work must address how destination and tra-
jectory prediction may be merged for LBSs. Furthermore, 
additional investigations are required into how the decay 
and dynamic change of mobility patterns over time can be 
addressed in destination predictions. Overall, this is par-
ticularly important to maintain the utility of human move-
ment patterns for LBSs.
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