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1. Introduction

The idea of constructing process-aware information systems [1] to support
correct execution and analysis of workflows based on explicit models of the pro-
cesses dates back to the work on office-automation [2, 3, 4, 5] in the late 70ties.
The early work was influenced by the Petri Net process model [6], which has also
heavily influenced subsequent process modeling standards such as UML activity
diagrams [7, 8] and BPMN [9] and the work on formal semantics and analysis of
workflow and business processes (e.g. [10, 11, 12, 13]).

The heavy influence of the Petri Net model is quite natural. It is the first
process model explicitly representing the concurrent execution of activities, it has
a formal semantics supporting analysis and verification, and it has an intuitive
graphical notation. To briefly recall, a Petri Net is a directed graph with nodes
alternating between transitions and places, and a marking assigning zero or more
tokens to each place. A transition is enabled if all places connected to it by an
incoming edge is marked by at least one token. If an enabled transition is fired,
one token from each place connected by an incoming edge is removed and one
token is added to each place connected by an outgoing edge. Firing a transition
thus represents the execution of an activity and the tokens represent resources
needed to execute activities.

(a) First A, then B (b) A is a condition for B (c) B is a response to A

Figure 1: Condition and response relations as Petri Nets

However, the notion of places and tokens in the Petri Net model is intrinsically
linear and imperative. It describes a way to implement dependencies between
activities where the ability to redo an activity must be explicitly modeled. This
has been recognized, in particular in the incarnation of BPMN, to increase the risk
of over-specification and be best suited for processes that follow a strict flow of
control [14, 15]. As an example consider the property activity A is a condition for
activity B, i.e. an execution of B must be preceded by an execution of A in the
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past. The Petri Net in Fig. 1(a) is likely to be the first choice of representation, but
it really describes the more rigid implementation that activity A can be executed
first (and only once) and then activity B can be executed (and only once). The
Petri Net in Fig. 1(b) describes the general property, if all markings are allowed as
accepting (terminating). The dual property, that activity B is a response to activity
A, i.e. an execution of A must be followed by an execution of B at some point in
the future, is also implemented by the Petri Net in Fig. 1(a). However, in order
to allow all possible executions one needs a less restrictive Petri Net as the one in
Fig. 1(c) with the initial marking being the only accepting marking.

As an alternative, declarative models such as temporal logics like LTL [16] or
CTL [17] can be employed in order to maintain more flexibility of the execution
and provide a specification of the dependencies between activities which abstracts
from any particular implementation. This can in particular be used as a contract
for a subsequent implementation or compliance verification [18]. Temporal logics
are however in general considered to be difficult to understand by end-users and
typically proposed to be replaced by patterns of properties, such as the condition
and response patterns considered in Fig. 1(b) and Fig. 1(c) [19, 20, 18]. However,
before the contract can be checked for a workflow process it is usually required
that the contract is rewritten either to a particular (normal) form [21] or translated
to an (imperative) automaton [20, 22, 23], which is difficult to understand and
relate to the original contract.

This motivates finding a declarative process model which both can be under-
stood by end-users of workflow management systems, e.g. by capturing patterns
in a direct way, and supports verification and monitoring without rewriting the
process. Dynamic Condition Response (DCR) Graphs [24, 25, 26, 27] is a can-
didate for such a declarative process language developed in the PhD project [28]
of the second author as part of the Trustworthy Pervasive Healthcare Services
(TrustCare) [29] research project.

From a practical perspective, DCR Graph model generalizes and formalizes
the core primitives of the declarative Process Matrix model [30], developed, patented
and used successfully for more than a decade by Resultmaker [31], the industrial
partner of the project. The goal of the formalization was to provide the basis for
formal verification and safe distributed execution of flexible, cross-organizational
workflow processes as found in the healthcare sector.

From a technical perspective, a DCR Graph is a directed graph described by
a 9-tuple (E,M,→•, •→,→�,→+,→%, L, l). The nodes of the graph are given
by the set E of events. The event represents that some activity, as indicated by
the labeling function l : E → P(L), happens in the workflow. The edges of the
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(a) DCR Graph condition relation (b) DCR Graph response relation

Figure 2: Condition and response relations in DCR Graphs

graph are given by five relations: The condition (→•), response (•→), milestone
(→�), include(→+), and exclude (→%) relation respectively. The condition and
response relations thus directly captures the condition and response patterns as
shown by the DCR Graphs in Fig.1 . Before explaining the milestone relation,
it is helpful to take a look the 2nd element of the DCR Graph tuple, which is
the marking M. The marking consists of a triple of sets of events (Ex,Re, In)
representing the state of the process. The set Ex ⊆ E of executed events records
which events have been executed in the past. The set Re ⊆ E of response events
records which events are required to be executed (i.e. responses) in the future in
order for the entire execution to be accepting. The milestone relation means that
an event can not execute while another event is pending response, it is particularly
useful for descibing that a process can not continue on to a new phase while a
previous phase hasn’t been completed. Finally, the set In ⊆ E of included events
records the events which are currently included. If e →% e′ then e′ is removed
from the set In when e is executed, and if e →+ e′ then e′ is added to the set In
when e is executed. This notion of dynamic inclusion and exclusion of events is
the key new ingredient of DCR Graphs compared to other declarative approaches.
Only currently included events in Re are required in order for the execution to be
accepting, and only included condition events e′ of an event e need to be in the set
Ex in order for the event e to be enabled.

The markings can also be seen as the state of a (kind of Kripke) logical pro-
gram given by the DCR Graph [32]. Then Ex is the set of basic facts that has been
proven, Re is what has to be proven (possibly again) or excluded from the world to
complete the proof, and In is the set of facts that are relevant in the current world.
The markings also form the states of a Büchi-automata representation of DCR
Graphs [25], which allows verification of safety and liveness properties using the
SPIN model checking tool [28, 33].

The main new contribution of the present paper is to conservatively extend
the DCR Graph model to allow for (discrete) time deadlines, while preserving the
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Figure 3: A timed DCR graph describing the global contract for a cross-organizational case man-
agement system.

simple operational semantics and that safety and liveness properties of the mod-
els can be formally verified by mapping the graphs to finite state Büchi-automata.
Fig. 3 shows an example of a timed DCR Graph which we will use as exam-
ple in the paper. The graph extends an untimed DCR Graph from a case study
described in [34] which captures the global requirements of a distributed, cross-
organizational case management system being developed by Exformatics A/S.
The system spans three different types of organizations. The first is the unions
for employees in Denmark, which creates, closes and updates cases on behalf of
their members (represented by the events labelled with the U and respectively
Open case, Close case and Update Case. The two other organizations are
respectively the umbrella organization for the unions (LandsOrganisationen, LO)
and the umbrella organization for the employers (Dansk Arbejdsgiverforening,
DA). When a case is created by a union, LO and DA must agree on a date for a
meeting and hold the meeting within 14 days from when the case was created.
The deadline is expressed by the number 14 attached to the response relation from
Open case to Hold meeting. If the meeting is not ready to be held after 14
days however, the deadline can be extended by LO by executing the event Extend
Deadline. However, this event only becomes enabled 14 days after the case has
been created, which is represented by the number 14 attached to the condition
relation from Open case and Extend Deadline.

As described in [27], the DCR Graphs model admits a very general technique
for distributing a graph describing a global contract for e.g. a cross-organizational
process, as a network of synchronously communicating graphs describing the con-
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tracts for each local organization, and which combined describe the same process
as the global contract. Another new contribution of the present paper is to extend
this technique to timed DCR Graphs and provide a detailed proof of the correct-
ness of the distribution technique. It is the first step of the further development
of the DCR Graph model and its use for specification and safe execution of dis-
tributed, cross-organizational workflow processes to be carried out in the recently
initiated industrial PhD project of the third author.

The rest of the paper is structured as follows. In Sec. 2 below we briefly survey
related work. In Sec. 3 we first recall the formal definition of DCR Graphs and
their semantics, and then proceed to define the extension to timed DCR Graphs.
We then in Sec. 4 define and exemplify timed notions of safety and liveness for
timed DCR Graphs. In Sec. 5 we exemplify and provide the technique for dis-
tributing a global timed DCR Graph, extending the technique for un-timed DCR
Graphs given in [27]. Finally we conclude and comment on future work in Sec. 6.

2. Related Work

The DCR Graph model and graphical representation is similar to the Declare
workflow language [35, 20]. Indeed the graphical representation of events and
condition and response relations are the same in DCR Graphs and Declare. How-
ever, the two approaches differ in a crucial way. While the Declare model includes
a fairly rich set of patterns as relations between events based on the patterns iden-
tified in [19], the DCR Graph model in addition to the condition and response
relations only allows the milestone relation and the dynamic inclusion and ex-
clusion relations. Still, the DCR Graphs model is more expressive: It allows to
express all ω-regular languages [28], while Declare only allow expressing prop-
erties covered by finitary LTL. Moreover, Declare models are translated to either
LTL or a new notion of colored automata [36] before they are verified or executed.
The DCR Graph model directly supports execution of the process model based on
the simple notion of markings of the graph.

There are many researchers [10, 11, 37, 12, 13, 38, 39] who have explicitly
focussed on the problem of verifying the correctness of inter-organizational work-
flows based on variants of Petri nets. In [10], message sequence charts are used
to model the interaction between local workflows modeled as Petri nets. In [11]
Kindler et. al. follows a similar approach, using a set of scenarios given as se-
quence diagrams to specify the interactions. Criteria of local soundness guarantee
the global soundness of an inter-organizational workflow. In [37], so-called Query
Nets based on predicate/transition Petri nets are used to guarantee global termina-
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tion. Besides the use of Petri nets, a key difference between the present paper and
the work in [10, 11, 37] is that while we take a top down approach and synthesize
models of the local workflows from a model of the global workflow, the latter
work take a bottom up approach, assuming that the models of the local workflows
are given.

A top down approach is taken in [13, 38], where a shared public view of an
inter-organizational workflow given as a workflow net is partioned among the par-
ticipating entities. A notion of projection inheritance is used to generate a private
view that is a subclass to the relevant public view and guarantee deadlock and
live-lock freedom. A more liberal and weaker notion than projection inheritance
is used in [12] to guarantee weak termination in multiparty contracts based on
open nets.

Modeling global behavior as a set of conversations among participating ser-
vices has been studied by many researchers [40, 41, 42, 43, 44, 45] in the area
business processes. An approach based on guarded automata studied in [40], for
the realizability analysis of conversation protocols, whereas the authors in [41]
used colored petri nets to capture the complex conversations. Similarly, but using
process calculus to model service contracts, Bravetti-Zavattaro proposed confor-
mance notion for service composition in [44] and further enhanced their correct-
ness criteria in [45] by the notion of strong service compliance. The synthesis of
local components from a global model has also been researched for process calcu-
lus formalizations of the imperative choreography language WS-CDL in the work
on structured communication-centred programming for web services by Carbone,
Honda and Yoshida [46]. To put it briefly, the work formalizes the core of WS-
CDL as the global process calculus and defines a formal theory of end-point pro-
jections projecting the global process calculus to abstract descriptions of the be-
havior of each of the local ”end-points” given as pi-calculus processes typed with
session types.

Also researchers [47, 48, 49, 50] in the web services community have been
working on web service composition and decentralized process execution using
BPEL [51] and other related technologies to model web services. A technique
to partition a composite web service using program analysis is studied in [48]
and [49] explore decomposition of a business process modeled in BPEL. Using
a formal approach based on I/O automata representing the services, the authors
in [50] study the problem of synthesizing a decentralized choreography strategy,
that will have optimal overhead of service composition in terms of costs asso-
ciated with each interaction. In [52, 53, 54] foundational work is presented on
synthesizing distributed transition systems from global specification for the mod-
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els of synchronous product and asynchronous automata[55]. In [54] structural and
behavioral characterizations of the synthesis problem for synchronous and loosely
cooperating communication systems are given, based on three different notions of
equivalence: state space, language and bisimulation equivalence. Further Castel-
lani et. al. [52] characterizes when an an arbitrary transition system is isomorphic
to its product transition systems with a specified distribution of actions and they
have shown that for finite state specifications, a finite state distributed implemen-
tation can be synthesized. Complexity results for distributed synthesis problems
for the three notions of equivalences were studied in [53].

A methodology for deriving process descriptions from a business contract for-
malized in a formal contract language is studied in [56], while in [57] is proposed
an approach to extract a distributed process model from collaborative business
process. In [58, 47] is proposed a technique for flexible decentralization of a
process specification with necessary synchronization between the processing en-
tities using dependency tables, whereas the authors in [59] present a framework
for optimizing the physical distribution of workflow schemas based on families of
communicating flow charts.

Common to all the approaches discussed above are that they are confined to
imperative process models such as Petri nets, workflow/open nets and automata.
To the best of our knowledge, there exists very few works [60, 61] that have stud-
ied the synthesis problem in declarative modeling languages and none where both
the global and local processes are given declaratively. Fahland [60] studies top
down synthesis of Petri Net workflows from a limited subset of the declarative
Declare/DecSerFlow [20] model, while Montali [61] studies the bottom-up com-
position of Declare [35] models with respect to conformance with a given chore-
ography.

None of the work above study synthesis or conformance of cross-organizational
workflow with time constraints. [62] provides a good overview of various tem-
poral logics that have been used for specification of real-time systems. Similar to
the extension to DCR Graph proposed in the present paper, Time Petri nets [63]
extend regular Petri nets by allowing transitions to be labelled with time bounds
0 ≤ a ≤ b∧a 6=∞, such that a transition can only fire after a delay of a time steps
after it has been enabled last and must either fire or be disabled before b time has
passed. Time Petri nets have been studied as a formalism to model and verify time
dependent concurrent systems in [64]. In [65, 66] the properties of reachability,
boundedness and liveness for time Petri nets are studied, while [67] defines the
semantics of time Petri nets in terms of timed automata. Time Workflow nets, a
subclass of time Petri nets, have been introduced in [68] as a method for modeling
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time management in workflow processes. Timed Petri nets [69] are a variation
of Petri nets where a (rational) time duration is assigned to every transition and
transitions are required to fire as soon as they become enabled. Timed Petri nets
are mainly used for performance evaluation [70]. Timed-arc Petri nets [71, 72]
are another variation of Petri nets where tokens are annotated with an age and
arcs from places to transitions are labelled with a time interval. The tokens that a
transition can consume are then limited to those whose age falls within these time
intervals. For Timed-arc Petri nets there is no notion of urgency. Transitions are
neither required to fire when adequate tokens are available nor when those tokens
are about to expire.

3. Timed Dynamic Condition Response Graphs

We employ the following notations in the rest of the paper.
Notation: We write∞ for the set of finite ordinals and the least infinite ordinal ω.
For an ordinal k ∈ ∞ we write [k] for the (possibly infinite) set {i | 0 ≤ i < k}.
For a set E we write P(E) for the power set of E (i.e. set of all subsets of E).
For a binary relation→⊆ E × E and a subset ξ ⊆ E of E we write→ξ and ξ→
for the set {e ∈ E | (∃e′ ∈ ξ | e→ e′)} and the set {e ∈ E | (∃e′ ∈ ξ | e′ → e)}
respectively, and abuse notation writing → e and e → for → {e} and → {e}
respectively when e ∈ E.

We first recall in Def. 3.1 the formal definition of DCR Graphs and their se-
mantics.

Definition 3.1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple
(E,M,→•, •→,→�,→+,→%, L, l), where

(i) E is a set of events (or activities),

(ii) M = (Ex,Re, In) ∈ P(E)× P(E)× P(E) is the marking

(iii) →•, •→,→�,→+,→%⊆ E × E is the condition, response, milestone, in-
clude and exclude relation respectively.

(iv) L is the set of labels and l : E→ P(L) is a labeling function mapping events
to sets of labels.

We define that an event e ∈ E is enabled, written M `G e, if e ∈ In ∧ (In∩ →•e
) ⊆ Ex and (In∩ →�e) ⊆ E\Re.
Finally, we define the result of executing an event e as (Ex,Re, In) ⊕G e =def(
Ex ∪ {e}, (Re \ {e}) ∪ e•→, (In \ e→%) ∪ e→+

)
.
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Intuitively, the marking of a DCR Graph records the state. An event is then e
is enabled in a marking, if it is included and every event which is a condition for
e is either excluded or executed or, and every event which is a milestone for e is
either excluded or not required as a response, i.e. it is in a completed state. Below
we give a simple example of a DCR Graph and execution of an event based on the
graph in Fig. 3.

Example 3.1. As an example consider the underlying (untimed) DCR Graph G
of the timed DCR Graph Gt in Fig. 3: the initial marking of G is M = (∅, ∅,E \
{Accept LO,Accept DA,Close Case,Update Case}). The only enabled event
is Open case, all other events are either blocked through the condition relation,
or not in the set of included events. After executing Open case, the new marking
M′ ofG becomes: M′ = M⊕GOpen case = ({Open case}, {Propose dates-LO,
Hold meeting,Close Case},E \ {Accept LO,Accept DA}). Open case is
added to the set of executed events, Close Case, Propose dates-LO and Hold
meeting are responses to Open case and therefore added to the set of pending
responses and finally Close case and Update Case are added to the set of in-
cluded events through the include relation from Open case. The enabled events
for M′ are Extend Deadline, Propose dates-LO, Update Case and Close
case. Note that the event Open case is not enabled because there is a milestone
relation from Close case, and Close case is in the response set. In other words,
the case has to be closed by the union before it can be opened again.

We now proceed to define the conservative extension of DCR Graphs to allow
(discrete) time constraints. The aim is to allow modeling interesting timed systems
while preserving that finite DCR Graphs have tractable finite state semantics and
the technique for distribution of DCR Graphs still applies. The basic idea is to
annotate response relations with discrete (possibly infinite) time constraint k ∈ ∞
and condition relations with a finite time constraint j ∈ ω. A response relation

e
k•→ e′ then specifies that the response event e′ must happen within k time steps

after the last time e happened. The condition relation e
j
→• e′ specifies that the

last time the condition event e happened must be at least j time steps before e′

can happen. That is, the time constraint e
ω•→ e′ means that the event e′ should

happen eventually after e happens, and the time constraint e
0→• e′ means that

event e should have happened before e′ can happen, corresponding to respectively
the response and condition constraints in un-timed DCR Graphs. For this reason
we often write e •→ e′ for e

ω•→ e′ and e→• e′ for e
0→• e′.
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To be able to evaluate the timed constraints we extend markings to include
two functions, a function tex : Ex→ ω recording the time since the event was last
executed, and tre : Re→∞ recording the time deadline of the pending responses.

If there exists a maximal condition deadline, which is always the case if the
timed DCR Graph is finite, we say that it is bounded. For bounded timed DCR
Graphs we only need to record the time since last execution if it is below the max-
imal time constraint and otherwise record it as the maximal condition deadline.

Definition 3.2. A Timed Dynamic Condition Response Graph (Timed DCR Graph)
G is a tuple (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l), where

(i) Mt = (M, tex, tre) ∈ M(G) is the timed marking, forM(G) =def (P(E)×
P(E)× P(E))× Ex→ ω × Re→∞ if M = (Ex,Re, In),

(ii) (E,M,→•, •→,→�,→+,→%, L, l) is a DCR Graph, referred to as the un-
derlying DCR Graph,

(iii) tex : Ex→ ω is the time since the event happened,

(iv) tre : Re→∞ is the maximal time deadline of the required response,

(v) tc : (→•)→ ω is the (minimal) required time delay since the condition event
happened,

(vi) tr : (•→)→∞ is the maximal time deadline of the response event.

We write e
k•→ e′ for e •→ e′ and tr(e, e′) = k and similarly write e

k→• e′ for
e→• e′ and tc(e, e′) = k. We define the maximal condition delay as maxcG =def

sup{k | ∃e, e′ ∈ E.e
k→• e′} and the minimal included response deadline by

minrG = min{tre(e) | ∃e ∈ Re ∩ In}.

Notation: We introduce the following shorthand notation for annotating the events
in the executed and response sets with the their timestamp according to respec-
tively tex and tre: For a marking Mt = (({e1, e2}, {e2, e3}, In), tex, tre) we write
({e1 : tex(e1), e2 : tex(e2)}, {e2 : tre(e2), e3 : tre(e3)}, In).

In Def. 3.3 below we formalize when events are enabled and the result of
executing an event in a timed DCR Graph. An event e is enabled in a timed DCR
Graph if it is enabled in the underlying un-timed DCR Graph and for all condition

events e′
k→• e the time tex(e′) since the last execution of e′ is greater or equal than
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k. If an event e is executed the sets (Ex,Re, In) are updated as for the un-timed
DCR Graphs, and in addition, the execution time for e is set to 0 and all response

deadlines for events e′ where e
k•→ e′ are set to k.

Note that the execution of an event does not advance time. Instead we intro-
duce the notion of time advance steps n ∈ ω, which increases the execution time
of events in Ex and decreases the response deadlines for events in Re. A time
advance step n is only enabled if n ≤ minrG, that is, all currently included re-
sponse deadlines are greater than or equal to n. This means that time can not pass
a response deadline of an included event, but it may pass a response deadline of
an excluded event. In the latter case, the deadline becomes zero.

Definition 3.3. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l), and timed marking Mt =

(
(Ex,Re, In), tex, tre

)
we define that an event e ∈ E is enabled, written Mt `G e, if M `G′ e, where G′ is

the underlying un-timed DCR Graph ofG and ∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex(e

′).
Moreover, for n ∈ ω we define that the time advance step n is enabled, written
Mt `G n if minrG ≥ n.

We define the result of executing an event e as Mt ⊕G e =def

(
(Ex,Re, In)⊕G

e, t′ex, t
′
re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We define the result of advancing time with n by Mt ⊕G n =def

(
(Ex,Re, In),

tex⊕n, tre	n
)
, where tex⊕n(e) =def min{tex(e)+n,maxcG} and tre	n(e) =def

max{tre(e)− n, 0}.

Example 3.2. As an example, consider again the Timed DCR Graph Gt from
Fig. 3: the initial marking of Gt is Mt = (∅, ∅,E \ {Accept LO,Accept DA,
Close Case,Update Case}), note that because of our shorthand notation and
the empty Ex and Re sets the marking looks the same as the marking M of the
underlying DCR Graph G. The only enabled event for the initial marking Mt

is Open case. Executing Open case results in the marking Mt
′ = Mt ⊕G

Open case = ({Open case : 0}, {Propose dates-LO : 3,Hold meeting :
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14,Close Case : ω},E \ {Accept LO,Accept DA}). Except for the timed part
Mt’ is the same as M’ that resulted from executing Open case on the underlying
DCR Graph G. In the timed marking we also record the time that has passed
since Open case was executed and the deadlines for which the responses on
Propose dates-LO, Hold meeting and Close case need to be satisfied. Note
that unlike the untimed example Extend Deadline is not enabled because of the
time constraint on the condition.

The timed response on Propose dates-LO limits the time to advance from the
marking Mt’ to a maximum of 3 steps. Doing a time advance step of size 3 results
in the new marking Mt

′′ = Mt
′⊕G3 = ({Open case : 3}, {Propose dates-LO :

0,Hold meeting : 11,Close Case : ω},E \ {Accept LO,Accept DA}). We
can now no longer advance time before Propose dates-LO has been executed or
excluded.

It follows directly from the definition above that if an event is enabled in a
timed DCR Graph then it is also enabled in the underlying (un-timed) DCR Graph.
Moreover, the result on the sets (Ex,Re, In) in the marking when executing an
event in a timed DCR Graph is the same as when it is executed in the underlying
DCR Graph and time advance steps do not change the marking of the underlying
DCR Graph. Conversely, a DCR Graph G can be regarded as a timed DCR Graph
Gt havingG as the underlying DCR Graph and all condition delays (and execution
times in the marking) 0 and all response deadlines (in the graph and the marking)
ω. It then holds that, if an event is enabled in the DCR Graph G, then it is also
enabled in the corresponding timed DCR Graph Gt. Moreover, the execution
times and response deadlines in the marking will always be 0 and ω respectively.

We define in Def. 3.4 timed (must) executions and the corresponding labelled
transition system for timed DCR Graphs as for un-timed DCR Graphs, except that
executions can now also contain time advance steps. Moreover, for an execution
to be accepting it is required that it is accepting in the underlying DCR Graph
and moreover contains infinitely many time advance steps. Thus, an accepting
execution may contain only finitely many events, but then it will after the last
event contain an infinite sequence of time advance steps. It follows directly that
(accepting) executions in a timed DCR Graph correspond to (accepting) execu-
tions in the underlying DCR Graph (where the time advance steps are removed).
Moreover, an (accepting) execution in a DCR Graph G will have infinitely many
corresponding (accepting) executions in the corresponding timed DCR Graph Gt

obtained by interleaving the untimed execution with any infinite sequence of time
advance steps.
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Definition 3.4. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) we define a timed execution σM of G of length
k ∈ ∞ from M to be a (finite or infinite) sequence of tuples σ : [k] → M(G) ×
(E× L ∪ ω)×M(G) such that if for i ∈ [k],

• σ(i) = (Mi, ei, ai,M
′
i) ∧ ai = l(ei) ∧Mi `G ei ∧M′i = Mi ⊕G ei or

• σ(i) = (Mi, n,M
′
i) ∧Mi `G n ∧M′i = Mi ⊕G n

and M = M0 and ∀i ∈ [k − 1].M′i = Mi+1.
We say the execution σ is a must execution if ∀i ∈ [k].σ(i) = (Mi, ei, ai,M

′
i) =⇒

ei ∈ Ini ∩ Rei and accepting if

(i) ∀i ∈ [k].
(
∀e ∈ Ini ∩ Rei.∃j ≥ i.ej = e ∨ e 6∈ In′j)

)
and

(ii) ∀i ∈ ω.∃k ∈ ω.∃j > i.σ(i) = (Mi, k,M
′
i)

where Mi = ((Exi, Ini,Rei), texi, trei) and M′j = ((Ex′j, In
′
j,Re′j), t

′
exj, t

′
rej). Let

exeMt(G), mexeMt(G), accMt(G)and maccMt(G) denote respectively the set of all
executions, all must executions, all accepting executions, and all accepting must
executions of G starting in marking Mt.

We say that a marking M′ is reachable inG (from the marking M) if there exists
a finite execution ending in M′ and letMM→∗(G) denote the set of all reachable
markings from M.

We define the corresponding labeled transition system for G as TS(G) =
(M(G),Mt, EL(G),→) where EL(G) = E × L ∪ ω is the set of labels of the
transition system, Mt is the initial marking, and→⊆ M(G) × EL(G) ×M(G)

is the transition relation defined by M
φ−→ M′ if there exists a timed execution σM

of G of length 1 from M such that σ(0) = (M, φ,M′).
Finally we define a zeno-run to be an infinite run with only finitely many time

steps.

It is worth noting that if the DCR Graph is finite, the reachable set of states for
the corresponding labelled transition system will be finite.

Lemma 3.1. The LTS for any finite timed DCR Graph G has a finite number of
reachable states.
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Proof The sets of executed events, pending responses and included events are
limited to the power set of the finite set of events since (Ex,Re, In) ∈ (P(E) ×
P(E)×P(E)). The execution times of executed events are limited to the maximum
condition time, i.e. ∀e ∈ Ex | tex(e) ∈ [0 . . .maxcG]. The response times of
pending responses are limited to the maximum response time or ω, i.e. ∀e ∈ Re |
tre(e) ∈ [0 . . .max{k | ∃e, e′ ∈ E.e

k•→ e′}] ∪ ω.

4. Safety and Liveness Properties

In this section we define safety and liveness properties of timed DCR Graphs
and prove they are decidable for finite, bounded timed DCR Graphs.

First we identify the unwanted markings, referred to as time-locked, from
where time can no longer progress. Note that zeno runs may still exist from a
time-locked marking.

Definition 4.1. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) with a timed marking Mt =

(
(Ex,Re, In), tex, tre

)
we define that Mt is time-locked , written TL(Mt), if ∀Mt

′ ∈ MMt→∗ .¬Mt
′ `G 1,

meaning that there is no reachable marking from which time can progress. We
define that G is timelock free, if ∀M′ ∈ MM→∗ .¬TL(M′), meaning that there
exists no reachable time-locked marking.

Proposition 4.1. Time-lock and time-lock freedom is decidable for finite bounded
DCR Graphs.

Proof To determine if a marking Mt is time-locked, we must check for the exis-
tence of a transition labelled by a time-step from any of the reachable markings
from Mt, which is finite by Lem. 3.1. To determine time-lock freedom for a graph
G we just have to check every of the finitely many reachable markings from the
initial marking if it is time-locked.

A timed DCR Graph is said to be deadlock free if and only if for any reachable
marking, there is either an enabled event or no included required responses. Fur-
thermore, it is to be strongly deadlock free if and only if for any reachable marking,
there is either an enabled event which is also a required response or no included
required responses.

Definition 4.2. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) with a timed marking Mt =

(
(Ex,Re, In), tex, tre

)
15



we define that Mt is in deadlock, written DL(Mt), if ∀e ∈ E.Mt 6`G e∧(In∩Re 6= ∅)
and that Mt is in strong deadlock, written SDL(Mt), if ∀e ∈ Re.Mt 6`G e ∧ (In ∩
Re 6= ∅) We define that G is deadlock free, if ∀Mt

′ ∈ MMt→∗ .¬DL(Mt
′) and we

say that G is strongly deadlock free, if ∀Mt
′ ∈MMt→∗ .¬SDL(Mt

′).

Proposition 4.2. Deadlock and strong deadlock freedom is decidable for finite
DCR Graphs.

Proof Follows easily from the definition and Lem. 3.1.

A timed DCR Graph is said to be live if and only if, in every reachable mark-
ing, it is always possible to continue along an accepting run. We say it is strongly
live if and only if, from any reachable marking there exists an accepting must
execution.

Definition 4.3. For a timed Dynamic Condition Response GraphG = (E,Mt,→•
, tc, •→, tr,→�,→+,→%, L, l) we define that the G is live, if ∀M′ ∈MM→∗ .
accM′(G) 6= ∅, and strongly live, if ∀M′ ∈MM→∗ .maccM′(G) 6= ∅,

Proposition 4.3. Liveness and strong liveness is decidable for finite DCR Graphs.

Proof (Outline) First of all note that it is sufficient to consider the sub graph
where all time steps increment the time with 1. In [25, 28] is given a construction
of a Büchi-automaton from an un-timed DCR Graph which accepts the same exe-
cutions as the DCR Graph and essentially having markings of the DCR Graph as
states. This construction can be extended to timed DCR Graphs by adding the time
functions to the markings (increasing the number of states by a constant factor),
adding time steps and adding new marked copies of all states which are states
reached by a time advance step from a state which would have been accepting for
the underlying un-timed DCR Graph. These marked states will be the accepting
states of the automata. The definition guarantees that an execution is accepting if
and only if does not leave a response pending and included continuously (as for
the un-timed DCR Graphs), and it does make a time step infinitely often. This is
the definition of acceptance for timed DCR Graphs. Decidability of liveness and
strong liveness then follows from the decidability of language emptiness of finite
Büchi-automata.

Fig. 4(a) shows a timed DCR Graph which, depending on the time constraints
as shown in table 1, may have time-locks, deadlocks and violate liveness. The
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(a) (b)

Figure 4: Examples of time-lock and (strongly) deadlock freedom in timed DCR Graphs

Time-lock free Deadlock free Live
m > p

m ≤ p ∧ n > 0 ∧ p < ω x
(m ≤ p ∧ n = 0) ∨ p = ω x x x

Table 1: Values for p, m and n in Fig. 4(a)
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graph consist of three events: A, B, and C. The event A is a condition for B, and
the time deadline requires that the last execution of Amust have happenedm time
steps before B can happen. Similarly, the B is a condition for C, and the time
deadline requires that the last execution of B must have happened n time steps
before B can happen. The event C is a response to the event A, and the deadline
requires that it must happen within p time steps after the last execution of A. The
milestone relation from C to A is a kind of alternation pattern, it enforces that A
can not happen as long as C is required as a response, i.e. two As can not happen
without at least one C in between.

Now, if m > p then the graph enters both a marking which is both time-
locked and deadlocked if A happens and time advances with p steps. Since B is
a condition for C it must be executed before C can be executed, but this is not
possible since the delay constraint m is greater than p. The event A can not be
executed before C has been executed due to the milestone relation, thus we have
a deadlock. And since C is required urgently, i.e. within deadline 0, time can not
progress either, i.e. we have a time-lock.

This deadlock can be resolved if m ≤ p. Then B can be executed before the
deadline p expires, and we can repeat doingB infinitely often. However, the graph
may still contain a time-lock, and thus also violate liveness: If n > 0 and p < ω
and we do B exactly p time steps after A, then we can not do C since it requires
a delay of n > 0 after the execution of B, and time can not progress because C
is required urgently, i.e. within deadline 0. The time-lock is resolved if n = 0 or
p = ω, since then we can either do C just after B (without advancing time) or the
deadline on C will never expire and lead to time-lock.

The graph in Fig. 4(a) is neither strongly deadlock free nor strongly live for
any of the parameters. If A is executed it is not possible to execute C if only
required events are executed. This can be resolved by making B a response to A
as shown in Fig. 4(b). Strongly deadlock and live DCR Graphs may be needed if
the process is distributed between different roles as considered in the next section.
If A and B are carried out by role N , and C by role M , then role N may believe
that it is not necessary to do more after doing A. However, role M will then be
stuck with a required action C which is blocked because B has not been executed.

5. Timed DCR Graphs as Global Contracts

The DCR Graphs model admits a very general technique for distributing a
graph describing a global contract for e.g. a cross-organizational process, as a net-
work of synchronously communicating graphs describing the contracts for each

18



local organization [27]. The technique is based on a notion of projection, restrict-
ing the graph to a subset of the events and labels. The projection introduces a
notion of interface events, that can be regarded as a subscription to executions of
events in other components.

In Fig. 5 it is shown how the technique can be used to project the global graph
in Fig. 3 to three local graphs, representing the part of the process to be carried out
by respectively the unions (U), the umbrella organization for the unions (LandsOr-
ganisationen, LO) and the umbrella organization for the employers (Dansk Arbe-
jdsgiverforening, DA). The Open case event with the double border in the LO
local graph indicate that it needs to subscribe to the event Open case in order to
know when it can and must propose dates and hold a meeting. The unions on the
other hand need not subscribe to any external events, they only need to consider
their own events Open case, Close case and Update case.

5.1. Projection
First we define how to project a DCR Graph G with respect to a projection

parameter δ = (δE, δL) where δE ⊆ E is a subset of the events of G and δL ⊆ L is
a subset of the labels.

Intuitively, the projection G|δ contains only those events and relations that are
relevant for the execution of events in δE and the labeling is restricted to the set
δL. This includes both the events in δE and any other event that can affect the
marking, or the ability to execute an event in δE. The technical difficulty is to
infer the events and relations not in δE, referred to as external events below, that
should be included in the projection because they influence the execution of the
workflow restricted to the events in δE. The external events are never executed by
the local component but can be executed by other components, in which case the
local component must be notified so that it can update its marking accordingly.

Definition 5.1. If G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) then G|δ =
(E|δ,Mt|δ,→•|δ, tc|δ, •→|δ, tr|δ,→�|δ,→+|δ,→%|δ, δL, l|δ) is the projection of G
with respect to δ = (δE, δL), δE ⊆ E and δL ⊆ L where:

(i) E|δ =→ δE, for →=
⋃
c∈C

c, and C = {id, →•, •→, →�, →+, →%, •→→�,

→+→•,→%→•,→+→�,→%→�}

(ii) l|δ(e) =

{
l(e) ∩ δL if e ∈ δE

∅ otherwise
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(iii) Mt|δ = ((Ex|δ,Re|δ, In|δ), tex|δ, tre|δ) where:

(a) Ex|δ = Ex ∩ E|δ

(b) Re|δ = Re ∩ (δE∪ →� δE)

(c) In|δ = In ∩ (δE∪ →• δE∪ →� δE)

(d) tex|δ (e) = tex (e) if e ∈ Ex|δ

(e) tre|δ (e) = tre (e) if e ∈ Re|δ

(iv) →•|δ=→• ∩((→• δE)× δE)

(v) tc|δ : (→•|δ)→ ω
tc|δ (e, e′) = tc (e, e′)

(vi) •→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE))

(vii) tr|δ : (•→|δ)→∞
tr|δ (e, e′) = tr (e, e′)

(viii) →�|δ=→� ∩((→� δE)× δE)

(ix) →+|δ=→+ ∩
((

(→+ δE) × δE

)
∪
(
(→+→• δE) × (→• δE

)
∪
(
(→+→�

δE)× (→� δE

))
(x) →%|δ=→% ∩

((
(→% δE) × δE

)
∪
(
(→%→• δE) × (→• δE

)
∪
(
(→%→�

δE)× (→� δE

))
In (i) we define the set of events as the union of the set δE of events that we

project over, any event that has a direct relation towards an event in δE and events
that exclude or include an event which is either a condition or a milestone for
an event in δE. The additional events will be included in the projection without
labels, as can be seen from the definition of the labeling function in (??). This
means that the events can not be executed locally. However, when composed in a
network containing other processes that can execute these events, their execution
will be communicated to the process. For this reason we refer to these events as
the (additional) external events of the projection. As proven in Prop. A.1-A.3 the
communication of the execution of this set of external events in addition to the
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local events shared by others ensures that the local state of the projection stays
consistent with the global state.

Further (iii) defines the projection of the marking: The executed events remain
the same, but are limited to the events in E|δ. The responses are restricted to events
in δE and events that have a milestone relation to an event in δE because these are
the only responses that will affect the local execution of the projected graph. Note
that these events will by definition be events in E|δ but may be external events. In
case of set of included events, we take the actual included status of the events in
projection parameter along with the events that are conditions and milestones to
the events in projection parameter, as the include status of those events will have
an influence on the execution of events in local graph. All other external events of
the projected graph are not included in the projected marking regardless of their
included status in the marking of the global graph, because their include/exclude
status will have no influence on the execution of events in local graph.

Finally, (iv), (vi), (viii), (ix) and (x) state which relations should be included
in the projection. For the events in δE all incoming relations should be included.
Additionally inclusion and exclusion relations to events that are either a condition
or a milestone for an event in δE are included as well.

Fig. 5 shows how the case management example from fig. 3 can be pro-
jected over the three roles. The projection parameters for these projections are:
δU = ({Open case,Update Case}, {(Open case,U), (Update Case,U)}),
δLO = ({Propose Dates - LO,Accept LO,Extend Deadline,Hold Meeting},
{(Propose Dates - LO,LO), (Accept LO,LO), (Extend Deadline,LO),
(Hold Meeting,LO)}) and δDA = ({Propose Dates - DA,Accept DA},
{(Propose Dates - DA,DA), (Accept DA,DA)}). From the figure one can see
that the union needs to know nothing about the global contract. It can only open,
close and update the case and because these events are not depending on any of
the events of LO and DA, the union does not have to be aware of any other events.
LO on the other hand needs to know about most of the events and relations in the
contract because many of its internal events depend directly on events of the union
or DA. This reflects the role of LO as an intermediary between the union and DA,
which gives it a central role in the process. DA is only involved in arranging a
meeting and needs to be aware of a few of the events of LO to properly play its
role in this, but all other events that do not directly affect the meeting arrange-
ment part of the contract are not relevant for DA and therefore do not have to be
projected to the local graph for DA.

Prop. 5.1 below states the key correspondence between global execution of
events and the local execution of events in a projection. We have provided the
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Figure 5: Projection of the timed DCR graph in fig. 3 over the roles U, LO and DA

details of the proof in the appendix. In order to prove the time extension, we
first show the correspondence between global execution of events and the local
execution of events in a projection of the underlying DCR Graph. We then use
this result to prove the correspondence between the global and local execution of
events for the time extension to the marking, tex and tre.

Proposition 5.1. Let G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) be a Timed
DCR Graph and G|δ its projection with respect to a projection parameter δ =
(δE, δL). Then,

1. if e ∈ δE and l(e) ∩ δL 6= ∅ then Mt `G e ∧Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′ if
and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt

′′

2. if e 6∈ E|δ then Mt `G e ∧Mt ⊕G e = Mt
′ implies Mt|δ = Mt

′
|δ

22



3. if e ∈ E|δ (and l(e) ∩ δL = ∅) then Mt `G e ∧ Mt ⊕G e = Mt
′ implies

Mt|δ ⊕G|δ e = Mt
′
|δ.

Proof can be found in App. 1.

Example 5.1. We consider the projection in Fig. 5. Recall from Ex. 3.2 that the
execution of Open case in the initial marking

Mt = (∅, ∅,E \ {Accept LO,Accept DA,Close Case,Update Case})

gave rise to the marking

Mt
′ = ({Open case : 0},

{Propose dates-LO : 3,Hold meeting : 14,Close case : ω},
E \ {Accept LO,Accept DA})

We now give the projected markings of Mt and Mt’ for the three projection
parameters δU = (δUE , δ

U
L ), δLO = (δLOE , δLOL ), and δDA = (δDAE , δDAL ):

Mt|δU
= (∅, ∅, {Open case})

Mt
′
|δU

= ({Open case : 0}, {Close Case : ω},
{Open case,Close case,Update case})

Mt|δLO
= (∅, ∅, {Open case,Propose dates-LO,
Extend deadline,Hold meeting})

Mt
′
|δLO

= ({Open case : 0}, {Propose dates-LO : 3,Hold meeting : 14},
{Open case,Propose dates-LO,Extend deadline,Hold meeting})

Mt|δDA
= Mt

′
|δDA

= (∅, ∅, {Propose dates-LO,Propose dates-DA})

Let us verify that each of the properties 1.-3. in Prop. 5.1 holds for the pro-
jection parameters δU , δLO and δDA when executing the event e = Open case in
the initial marking Mt.

23



1. This property applies to the projection over the union because e ∈ δU
E and

l(e) ∩ δU
L 6= ∅. First of all the property requires us to verify that e is only

enabled in the global graph if and only if it is enabled in the local graph.
This is the case because both Mt `G e and Mt|δU

`G e. Secondly the
property requires us to verify that the result of executing e on the global
graph and then projecting the resulting marking over δU is the same as
executing e on the projected graph. This is the case because: Mt|δU

⊕G|δU
e =

Mt
′
|δU

.

2. This property applies to the projection over DA because e 6∈ E|δDA
. It re-

quires us to verify that if e does not occur in the events of the projected
graph G|δDA

, then the marking projected over δDA will be the same before
and after the execution of e. This is the case because Mt|δDA

= Mt
′
|δDA

.

3. This property applies to the projection over LO because e ∈ E|δLO
and

l(e) ∩ δLO
L = ∅. It requires us to show that if e is an external event in

the projected graph G|δLO
, then it must be the case that if we execute e on

G|δLO
, the resulting marking must be the same as if we had first executed

e on G and then projected the result over δLO. This is the case because
Mt|δLO

⊕G|δLO
e = Mt

′
|δLO

.

5.2. Composition
Now we define the binary composition of two DCR Graphs. The composition

of G1 and G2 is simply the component-wise union of the respective components.

Definition 5.2. G1 ∪ G2 = (E1 ∪ E2,Mt,→•1 ∪ →•2, tc1 ∪ tc2, •→1 ∪ •→2

, tr1 ∪ tr2,→�1 ∪ →�2,→+1 ∪ →+2,→%1 ∪ →%2, L1 ∪ L2, l1 ∪ l2), where
Mt = ((Ex1 ∪ Ex2,Re1 ∪ Re2, In1 ∪ In2), tex1 ∪ tex2, tre1 ∪ tre2)

Definition 5.3. The composition G1 ∪ G2 is well-defined when:

(i) ∀(e ∈ E1 ∩ E2 | (e ∈ Ex1 ⇔ e ∈ Ex2))

(ii) ∀(e ∈ (Ei
1∪ →•Ei

1∪ →�Ei
1) ∩ (Ei

2∪ →•Ei
2∪ →�Ei

2) | (e ∈ In1 ⇔ e ∈ In2)

(iii) ∀(e ∈ (Ei
1∪ →�Ei

1) ∩ (Ei
2∪ →�Ei

2) | (e ∈ Re1 ⇔ e ∈ Re2)

(iv) ∀(e ∈ Ex1 ∩ Ex2 | (tc1 e = tc2 e))

(v) ∀(e ∈ Re1 ∩ Re2 | (tr1 e = tr2 e))
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(vi) ∀(e, e′ ∈→•1 ∩ →•2| tc1(e, e′) = tc2(e, e
′))

(vii) ∀(e, e′ ∈•→1 ∩ •→2| tr1(e, e′) = tr2(e, e
′))

Where: Ei
i = {e ∈ Ei | l(e) 6= ∅} for i ∈ {1, 2}

(i) ensures that those events that will be glued together have the same exe-
cution marking. (ii) ensures that events that will be glued together and in both
DCR Graphs belong to either the set of internal events or the set of events that
have a condition/milestone relation towards an internal event, have the same in-
clusion marking. (iii) ensures that events that will be glued together and in both
DCR Graphs belong to the set of internal events have the same pending response
marking. (iv) ensures that executed events that will be glued together have the
same timed execution marking. (v) ensures that responses on events that will be
glued together have the same deadline. (vi) ensures that shared conditions have
the same required time delay. (vii) ensures that shared responses have the same
maximal deadline. If G1 ∪ G2 is well-defined, then we also say that G1 and G2

are composable with respect to each other.

Lemma 5.1. The composition operator ∪ is commutative and associative.

Proof According to definition 5.2, elements of the tuple defining the graph G =
G1 ∪ G2 are constructed from the union of the same elements in G1 and G2.
Composition is therefore commutative and associative, because the union operator
is commutative and associative.

Definition 5.4. We call a vector ∆ = δ1 . . . δk of projection parameters covering
for some DCR Graph G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l) if:

1.
⋃
i∈[k]

δEi = E and

2. (∀a ∈ L.∀e ∈ E.a ∈ l(e)⇒ (∃i ∈ [k].e ∈ δEi ∧ a ∈ δLi)

Proposition 5.2. If some vector ∆ = δ1 . . . δk of projection parameters is cover-
ing for some DCR Graph G then:

⋃
i∈[k]

G|δi = G

Proof Since the vector of projection parameters is covering, every event and la-
bel is covered in at least one of the projections. Moreover the definition of com-
position 5.2, is defined over union of individual components. Hence when all
projections are composed, we will get the same graph and hence

⋃
i∈[k]

G|δi = G.
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5.3. Safe Distributed Synchronous Execution of Timed DCR Graphs
Networks of timed DCR Graphs are defined exactly as networks of un-timed

DCR Graphs introduced in [27].

Definition 5.5. A network of timed DCR Graphs is a finite vector of timed
DCR Graphs G sometimes written as Πi∈[n]Gi or G0‖G2‖ . . . ‖Gn−1. Assum-
ing Gi = (Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li), we define the set of
events of the network by E(Πi∈[n]Gi) = ∪i∈[n]Ei and the set of labels of the
network by L(Πi∈[n]Gi) = ∪i∈[n]Li and we write the network marking as M =
Πi∈[n]Mi. Finally, letM(G) denote the set of network markings of G.

We define when an event is locally enabled in one of the components and the
result of executing an event locally as for un-timed DCR Graphs, except that we
instead use the definition of timed enabled and timed update of the marking. That
is, an event can be executed if it is locally enabled, and the result of executing
it is that it is synchronously executed in all components of the network sharing
the event. A time advance event is however defined to be enabled only if it is
enabled in all components and the result of advancing the time is to advance it in
all components. This ensures that time advances globally in the network.

Definition 5.6. For a network of timed DCR Graphs G = Πi∈[n]Gi where Gi =
(Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li), an event e ∈ E(Πi∈[n]Gi) is en-
abled at a location i in the distributed marking M = Πi∈[n]Mi, written M `G,i e,
if e ∈ Ei ∧Mi `Gi e, i.e. it is locally enabled in the ith timed dynamic condition
response graph. The result of executing an event e ∈ E(Πi∈[n]Gi) in a marking
M = Πi∈[n]Mi is the new marking M ⊕Gi e = Πi∈[n]M

′
i where M′i = Mi ⊕G e if

e ∈ Ei and M′i = Mi otherwise. For a network marking M = Πi∈[n]Mi we define
that the time advance event n is enabled, written M `G n, if Mi `Gi n for all
i ∈ [n] and the result of advancing time with n by M⊕G n = Πi∈[n]Mi ⊕Gi n.

We define executions of networks as follows. As for un-timed DCR Graphs, an
event can be executed if it is locally enabled in a component where it has assigned
at least one label. Time can be advanced globally if the time advance event is
enabled as defined above.

Definition 5.7. For a network of timed DCR Graphs G = Πi∈[n]Gi where li is the
labeling function of Gi, we define a timed execution σM of G of length k ∈ ∞
from marking M to be a (finite or infinite) sequence of tuples σ : [k] →M(G)×
([n]× E(Πi∈[n]Gi)× L(Πi∈[n]Gi) ∪ ω)×M(G) such that for i ∈ [k]
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• σ(i) = (Mi, hi, ei, ai,M
′
i) ∧ ai ∈ lhi(ei) ∧Mi `G,hi ei ∧M

′
i = Mi ⊕G ei or

• σ(i) = (Mi, n,M
′
i) ∧Mi `G n ∧M

′
i = M⊕G n

and M0 = M and ∀i ∈ [k − 1].M
′
i = Mi+1.

We say the execution is accepting if

(i) ∀i ∈ [k], h ∈ [n].
(
∀e ∈ Inh,i ∩ Reh,i.∃j ≥ i.ej = e ∨ e 6∈ In′h,j)

)
, where

Mi = Πh∈[n](Exh,i, Inh,i,Reh,i) and M
′
j = Πh∈[n](Ex′h,j, In

′
h,j,Re′h,j)

(ii) ∀i ∈ ω.∃h ∈ ω.∃j > i.σ(i) = (Mi, h,M
′
i)

We define the global transition system for a network of timed DCR Graphs as
follows.

Definition 5.8. For a network of timed DCR Graphs G = Πi∈[n]Gi where Gi =

(Ei,Mi,→•i, tci, •→i, tri,→�i,→+i,→%i, Li, li) and M = Πi∈[n]Mi, we define
the corresponding global transition system TS(G) to be the tuple

(M(G),M, EL(G),→N)

where EL(G) = (E(Πi∈[n]Gi)× L(Πi∈[n]Gi)) ∪ ω is the set of labels of the tran-
sition system, M is the initial marking, and →N⊆ M(G) × EL(G) × M(G)

is the transition relation defined by M
′ (e,a)−−→N M

′′
if there is a timed execution

σ
M
′ from M

′
of length 1 such that σ

M
′(0) = (M

′
, i, e, a,M

′′
) for some i ∈ [n]

and M
′ h−→N M

′′
if there is a timed execution σ

M
′ from M

′
of length 1 such that

σ
M
′(0) = (M

′
, h,M

′′
). (Accepting) executions of length k of the transition system

is defined as sequences transitions obtained similarly from (accepting) executions
σ of length k of the graph.

We are now ready to state the main theorem which follows from Def 3.4,
Def. 5.8 and Prop. 5.1.

Theorem 5.1. For a timed DCR Graph G, a covering vector of projection pa-
rameters ∆ = δ1 . . . δn and G∆ = Πi∈[n]G|δi it holds that the relation R =

{(M,M∆) | M ∈ M(G) and M∆ = Πi∈[n]M|δi} is a bisimulation between TS(G)

and TS(G∆) such that an execution is accepting in TS(G) if and only if the bisim-
ilar execution is accepting in TS(G∆).
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Proof (outline) In order to prove bisimilarity, we show (1) ∃M
(e,a)−−→ M′ in TS(G)

if and only if ∃M∆
(e,a)−−→ M′∆ in TS(G∆) and (2) ∃M

h−→ M′ in TS(G) if and only
if ∃M∆

h−→ M′∆ in TS(G∆).

1. According to Def 3.4, M
(e,a)−−→ M′ in TS(G) implies M

(e,a)−−→ M ⊕G e,
M `G e and a ∈ l(e). From Prop. 5.1 it then follows that M∆

(e,a)−−→ M′∆.

Similarly, if M∆
(e,a)−−→ M′∆ in TS(G∆) then again using Prop. 5.1, there

exists in TS(G) a transition M
(e,a)−−→ M′.

2. Since the time advances globally and synchronously in the network, it easily
follows that time advance steps can be mutually simulated and result in
consistent updates of the deadlines in the markings.

Now we have to prove that a timed execution in TS(G) is accepting if and only if
the corresponding execution is accepting in TS(G∆). If an execution in TS(G∆)
is accepting, then

1. according to Def. 5.8, in the network of projected graphs, ∀i ∈ [k], h ∈
[n].
(
∀e ∈ In|δh,i ∩ Re|δh,i .∃j ≥ i.ej = e ∨ e 6∈ In′|δh,i)

)
, where M∆i

=

Πh∈[n](Ex|δh,i , In|δh,i ,Re|δh,i) and M
′
∆j

= Πh∈[n](Ex′|δh,i , In
′
|δh,i

,Re′|δh,i). Ac-

cording to proposition 5.1 and since TS(G) ∼ TS(G∆), if there exists an
execution where an included response is eventually executed or excluded in
TS(G∆), then we will also have the corresponding execution satisfying that
an included response is eventually executed or excluded in TS(G).

2. As the time advances globally in the network, ∀i ∈ ω.∃h ∈ ω.∃j >

i.σ(i) = (Mi, h,M
′
i) in TS(G∆) implies that ∀i ∈ ω.∃h ∈ ω.∃j > i.σ(i) =

(Mi, h,M
′
i) in TS(G).

Therefore, if a timed execution is accepting in TS(G∆) then it is also accepting in
TS(G). On the similar lines, it trivially follows that if a timed execution in TS(G)
is accepting the corresponding execution in TS(G∆) is also accepting.

6. Conclusion

We have conservatively extended the declarative Dynamic Condition Response
(DCR) Graph process model introduced in the PhD thesis of the second author [24,
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28] to allow for (discrete) time deadlines. In particular, the simple operational
semantics of DCR Graphs is conservatively extended with time steps, preserv-
ing that safety and liveness properties of the models can be formally verified by
mapping bounded timed DCR Graphs to finite state automata. We proceeded to
extend to timed DCR Graphs the general technique provided in [27] for safe dis-
tribution of a global DCR Graph as a network of communicating DCR Graphs
which has the same behavior as the global DCR Graph. We have exemplified
timed DCR Graphs and the distribution technique on a timed extension of the
cross-organizational case management process studied in [34, 27]. The exam-
ple shows how a timed DCR Graph can be used to describe the global contract
for a timed workflow process involving several organizations, which can then be
distributed as a network of communicating timed DCR Graphs, having a graph
describing the local contract for each organization. Finally we have exemplified
how the time deadlines may introduce both deadlocks and so-called time-locks
where time cannot proceed in the model.

We plan for future work to study the application of the techniques in the
present paper for contract-oriented programming of distributed event-based sys-
tems and context-sensitive services. In particular, we are currently developing an
event-based programming language based on an extension of DCR Graphs with
data and sub processes. We will also study the formal relation between timed
DCR Graphs and other timed process models, in particular timed LTL [21], vari-
ants of Petri Net with time [63, 68, 71, 72] and timed automata [], and explore
verification of timed DCR Graphs using existing tools for these models. Finally
we intend to investigate the relation to the work on structured communication-
centred programming for web services by Carbone, Honda and Yoshida [46].
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A. Proofs to propositions in Sec. 5

Lemma A.1. e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}

Proof According to def 5.1-vi, the response relation in projected graph is
•→|δ=•→ ∩((•→→� δE)× (→� δE)) ∪ ((•→ δE)× δE)).
Informally it contains relations which can cause a response on an event which
is either included in the set of events in the project parameter (δE) or in a set of
events which are milestones to events in project parameter (→� δE).
•→|δ= {(e′′, e′) | e′′ •→ e′ ∧ e′ ∈ (δE∪ →� δE)} and hence
e•→|δ= {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
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Lemma A.2. e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE)

Proof According to def 5.1-ix, the include relation in projected graph is
→+|δ=→+ ∩

((
(→+ δE)×δE

)
∪
(
(→+→• δE)×(→• δE

)
∪
(
(→+→� δE)×(→�

δE

))
→+|δ= {(e′′, e′) | e′′ →+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ= {e′ | e→+ e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→+|δ=e→+ ∩(δE∪ →• δE∪ →� δE)

Lemma A.3. e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE)

Proof According to def 5.1-x, the exclude relation in projected graph is
→%|δ=→% ∩

((
(→% δE)×δE

)
∪
(
(→%→• δE)×(→• δE

)
∪
(
(→%→� δE)×(→�

δE

))
→%|δ= {(e′′, e′) | e′′ →% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ= {e′ | e→% e′ ∧ e′ ∈ (δE∪ →• δE∪ →� δE)}
e→%|δ=e→% ∩(δE∪ →• δE∪ →� δE)

Proposition A.1. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then,
for e ∈ δE and a ∈ δL it holds that M `G e ∧M ⊕G e = M′ ∧M′|δ = M′′ if and
only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.

Proof In order to prove the proposition, we have to show that the proposition in
both directions.

(G→P) for e ∈ δE and a ∈ δL. M `G e ∧ M ⊕G e = M′ ∧ M′|δ = M′′ =⇒
M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′.
We will split the proof into 2 steps:

(A) M `G e =⇒ M|δ `G|δ e
From def 3.1, we have M `G e =⇒ e ∈ In ∧ (In∩ →• e) ⊆ Ex and
(In∩ →�e) ⊆ E\Re.
In order to prove that M|δ `G|δ e, we have to show that
e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ. We will
prove each part individually as follows,
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(i) To prove: e ∈ In|δ.
From def 5.1-iiic we have,
In|δ = In ∩ (δE∪ →• δE∪ →� δE) therefore
e ∈ In ∧ e ∈ δE =⇒ e ∈ In|δ.

(ii) To prove: (In|δ∩ →•|δ e) ⊆ Ex|δ.
∀e′ ∈ (In|δ∩ →•|δ e),
(a) e′ ∈ In|δ =⇒ e′ ∈ In

(b) e′ ∈→•|δ e =⇒ e′ ∈→•e from def 5.1-iv
Using above 2 statements and from M `G e
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ e′ ∈ (In∩ →•e) =⇒ e′ ∈ Ex,
Further, (In|δ∩ →•|δ e) ⊆ Ex|δ, from def 5.1-iiia

(iii) To prove: (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ
∀e′ ∈ (In|δ∩ →�|δ e)
(a) e′ ∈ In|δ =⇒ e′ ∈ In

(b) e′ ∈→�|δ e =⇒ e′ ∈→�e, from def 5.1-viii

Using above 2 statements and from M `G e
e′ ∈ (In|δ∩ →�|δ e) =⇒ e′ ∈ (In∩ →� e) =⇒ e′ ∈ E\Re =⇒
e′ 6∈ Re,
According to def 5.1 iiib, we have Re|δ = Re ∩ (δE∪ →� δE). and
so e′ 6∈ Re =⇒ e′ 6∈ Re|δ.
Further, e′ ∈ E|δ ∧ e′ 6∈ Re|δ =⇒ e′ ∈ E|δ \ Re|δ.
Hence we can conclude that (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ

From (G→P)-A-i, (G→P)-A-ii and (G→P)-A-iii, we have proved that
e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆ Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ is valid.
Therefore we can conclude that M `G e =⇒ M|δ `G|δ e.

(B) To prove: M⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′.
We have M⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′)
and from the def 3.1, we can infer Ex′ = Ex ∪ {e},Re′ = (Re \
{e})∪ e•→, and In′ = (In ∪ e→+)\ e→%.
In projected graph, we have M|δ = (Ex|δ,Re|δ, In|δ), M′′ = (Ex′′|δ,Re′′|δ, In

′′
|δ)

and from above result we know that M|δ `G|δ e. Hence we can in-
fer that Ex′′|δ = Ex|δ ∪ {e},Re′′|δ = (Re|δ \ {e})∪ e•→|δ, and In′′|δ =
(In|δ∪ e→+|δ)\ e→%|δ.
We have to prove that M′|δ = M′′. In order to prove this equivalence,
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we will show that Ex′|δ = Ex′′|δ, Re′|δ = Re′′|δ and In′|δ = In′′|δ individually
as follows,

(i) To prove: Ex′|δ = Ex′′|δ.
Ex′|δ = (Ex ∪ {e}) ∩ E|δ from def 5.1-iiia

= (Ex ∩ E|δ) ∪ ({e} ∩ E|δ) distributive law of sets
= Ex|δ ∪ {e} according to def 5.1-iiia and e ∈ δE ⊆ E|δ.
= Ex′′|δ.
Hence we can conclude that Ex′|δ = Ex′′|δ.

(ii) To prove: Re′|δ = Re′′|δ.
Re′|δ =

(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE) from def 5.1-iiib

=
(
(Re\{e})∩ (δE∪ →� δE)

)
∪
(
e•→ ∩(δE∪ →� δE)

)
distribu-

tive law
=
(
Re∩(δE∪ →� δE)\({e}∩(δE∪ →� δE)

)
∪
(
e•→ ∩(δE∪ →�

δE)
)

set intersection distributes over set difference
= (Re|δ \ {e}) ∪

(
e•→ ∩(δE∪ →� δE)

)
= (Re|δ \ {e}) ∪ {e′ | e •→ e′ ∧ e′ ∈ (δE∪ →� δE)}
= (Re|δ \ {e})∪ e•→|δ using lemma A.1
= Re′′|δ
Hence we can conclude that Re′|δ = Re′′|δ.

(iii) To prove: In′|δ = In′′|δ
In′|δ = In′ ∩ (δE∪ →• δE∪ →� δE), from def 5.1-iiic

But we know that In′ = (In ∪ e→+)\ e→%
In′|δ =

(
(In ∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE)

In′|δ =
(
(In∪ e→+)∩(δE∪ →• δE∪ →� δE)

)
\
(
e→% ∩(δE∪ →•

δE∪ →� δE)
)

set intersection distributes over set difference
In′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE)

)
∪
(
e→+ ∩(δE∪ →•

δE∪ →� δE)
)
\
(
e→% ∩(δE∪ →• δE∪ →� δE)

)
distributive law

In′|δ =
((

In ∩ (δE∪ →• δE∪ →� δE)
)
∪ e→+|δ

)
\ e→%|δ using

lemmas A.2 and A.3
But we know that the marking in projected graph before executing
event e is In|δ = In ∩ (δE∪ →• δE∪ →� δE). Using this fact, we
can rewrite the above statement as follows,
In′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′|δ = In′′|δ
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Hence we can conclude that In′|δ = In′′|δ.

From (G→P)-B-i, (G→P)-B-ii and (G→P)-B-iii, we have proved that
Ex′|δ = Ex′′|δ, Re′|δ = Re′′|δ and In′|δ = In′′|δ. and there by we can conclude
that M′|δ = M′′.

Since we have proved both parts: ( (G→P)-A and (G→P)-B ), the proposi-
tion M⊕G e = M′ ∧M′|δ = M′′ =⇒ M|δ ⊕G|δ e = M′′ holds.

(P→G) for e ∈ δE and a ∈ δL. M|δ `G|δ e ∧ M|δ ⊕G|δ e = M′′ =⇒ M `G
e ∧M⊕G e = M′ ∧M′|δ = M′′

Again, we will split the proof into 2 parts.

(A) M|δ `G|δ e =⇒ M `G e
From def 3.1, we have M|δ `G|δ e =⇒ e ∈ In|δ ∧ (In|δ∩ →•|δ e) ⊆
Ex|δ ∧ (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ
In order to prove that M `G e, we have to show that
e ∈ In ∧ (In∩ →•e) ⊆ Ex and (In∩ →�e) ⊆ E\Re

(i) To prove: e ∈ In
From def 5.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)
e ∈ In|δ ∧

(
In|δ = In ∩ (δE∪ →• δE∪ →� δE)

)
=⇒ e ∈ In.

(ii) To prove: (In∩ →•e) ⊆ Ex
From def 5.1-iv, we have→•|δ=→• ∩((→• δE)× δE)
∀e′.e′ ∈→•|δ e =⇒ (e′, e) ∈→•|δ =⇒ (e′, e) ∈→• =⇒
e′ ∈→•e and therefore→•|δ e =→•e.
∀e′.e′ ∈ (In|δ∩ →•|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→•|δ e) =⇒
(e′ ∈ In) ∩ (e′ ∈→•e) =⇒ e′ ∈ (In∩ →•e), and hence
(In|δ∩ →•|δ e) = (In∩ →•e).
(In|δ∩ →•|δ e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex|δ.
according to def 5.1-iiia : Ex|δ = Ex ∩ E|δ.
Hence (In∩ →•e) ⊆ Ex|δ =⇒ (In∩ →•e) ⊆ Ex

(iii) To prove: (In∩ →�e) ⊆ E\Re
From def 5.1-viii, we have→�|δ=→� ∩((→� δE)× δE),
∀e′.e′ ∈→�|δ e =⇒ (e′, e) ∈→�|δ =⇒ (e′, e) ∈→� =⇒
e′ ∈→�e and therefore→�|δ e =→�e.
∀e′.e′ ∈ (In|δ∩ →�|δ e) =⇒ (e′ ∈ In|δ) ∩ (e′ ∈→�|δ e) =⇒
(e′ ∈ In) ∩ (e′ ∈→�e) =⇒ e′ ∈ (In∩ →�e), and hence
(In|δ∩ →�|δ e) = (In∩ →�e).
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(In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →� e) ⊆ E|δ\Re|δ =⇒
∀e′ ∈ (In∩ →�e).e′ 6∈ Re|δ.
according to def 5.1-iiib : Re|δ = Re ∩ (δE∪ →� δE),
∀e′ ∈ (In∩ →� e).e′ 6∈ Re|δ =⇒ e′ 6∈ (Re ∩ (δE∪ →� δE)).
Further, as e′ →� e, we know that e′ ∈ (δE∪ →� δE). The only
way e′ 6∈ (Re ∩ (δE∪ →� δE)) becomes true is when e′ 6∈ Re.
Hence (In|δ∩ →�|δ e) ⊆ E|δ\Re|δ =⇒ (In∩ →�e) ⊆ E\Re.

Form (P→G)-A-(i), (P→G)-A-(ii) and (P→G)-A-(iii), we can con-
clude that M|δ `G|δ e =⇒ M `G e .

(B) M|δ ⊕G|δ e = M′′ =⇒ M⊕G e = M′ ∧M′|δ = M′′

We have M|δ⊕G|δe = M′′ in the local graph where M|δ = (Ex|δ,Re|δ, In|δ),
M′′ = (Ex′′|δ,Re′′|δ, In

′′
|δ) and from the def 3.1, we can infer

Ex′′|δ = Ex|δ∪{e},Re′′|δ = (Re|δ\{e})∪ e•→|δ, and In′′|δ = (In|δ∪ e→+|δ
)\ e→%|δ.
In main graph, we know M `G e where M = (Ex,Re, In) and hence
we can workout the new marking as M ⊕G e = M′ where M′ =
(Ex′,Re′, In′) with Ex′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and
In′ = (In ∪ e→+)\ e→%.
We have to prove that M′′ = M′|δ.

(i) To prove: Ex′′|δ = Ex′|δ
Let us start with Ex′′|δ
Ex′′|δ = Ex|δ ∪ {e}
= (Ex ∩ E|δ) ∪ {e} from def 5.1-iiia
= (Ex ∪ {e}) ∩ (E|δ ∪ {e})
= Ex′ ∩ E|δ
= Ex′|δ
Hence we can conclude that Ex′′|δ = Ex′|δ.

(ii) To prove: Re′′|δ = Re′|δ
Let us start with Re′′|δ

Re′′|δ = (Re|δ \ {e})∪ e•→|δ
=
(
(Re ∩ (δE∪ →� δE)) \ {e}

)
∪ e•→|δ from def 5.1-iiib

=
(
(Re\{e})∩(δE∪ →� δE)

)
∪ e•→|δ (set relative complements)

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ (e•→ ∩(δE∪ →� δE)) using

lemma A.1
=
(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE)

= Re′ ∩ (δE∪ →� δE)
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= Re′|δ according to def 5.1-iiib.
Hence we can conclude that Re′′|δ = Re′|δ.

(iii) To prove: In′′|δ = In′|δ

Let us starts with In′′|δ and show that it will be equal to the projec-
tion over included set from global graph (In′|δ).
In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ

)
\ e→%|δ, from

def 5.1-iiic.
In′′|δ =

(
(In∩(δE∪ →• δE∪ →� δE))∪(e→+ ∩(δE∪ →• δE∪ →�

δE))
)
\(e→% ∩(δE∪ →• δE∪ →� δE)) using lemmas A.2 and A.3

In′′|δ =
(
(In∪ e→+)∩ (δE∪ →• δE∪ →� δE)

)
\ (e→% ∩(δE∪ →•

δE∪ →� δE)).
In′′|δ =

(
(In∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE).

In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).
In′′|δ = In′|δ.
Hence we can conclude that In′′|δ = In′|δ.

From (P→G)-B-i, (P→G)-B-ii and (P→G)-B-iii, we have proved that
Ex′′|δ = Ex′|δ, Re′′|δ = Re′|δ and In′′|δ = In′|δ and there by we can conclude
that M′′ = M′|δ.

Since we have proved both parts: ( (P→G)-A and (P→G)-B ), the propo-
sition for e ∈ δE and a ∈ δL. M|δ `G|δ e ∧ M|δ ⊕G|δ e = M′′ =⇒
M `G e ∧M⊕G e = M′ ∧M′|δ = M′′ holds.

Finally, we have proved the proposition in both ways
(
(G→P) and (P→G)

)
, there-

fore the proposition: for e ∈ δE and a ∈ δL it holds that M `G e ∧ M ⊕G e =
M′ ∧M′|δ = M′′ if and only if M|δ `G|δ e ∧M|δ ⊕G|δ e = M′′ holds.

Proposition A.2. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE, δL). Then,
for e 6∈ E|δ it holds that M `G e ∧M⊕G e = M′ implies M|δ = M′|δ.

Proof According to projection definition 5.1, e 6∈ E|δ =⇒ e 6∈ G|δ, therefore
there will not be any change in the marking. Hence M|δ = M′|δ.
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Proposition A.3. Let G = (E,M,→•, •→,→�,→+,→%, L, l) be a DCR Graph
andG|δ its projection with respect to a projection parameter δ = (δE, δL). Then for
e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge = M′ implies M|δ⊕G|δ e = M′|δ.

Proof The proof for this proposition is more or less similar to proof in the part
(P→G)-(B) of proposition A.1 with minor changes.

We have M ⊕G e = M′ where M = (Ex,Re, In) and M′ = (Ex′,Re′, In′) and
from the def 3.1, we can infer Ex′ = Ex ∪ {e},Re′ = (Re \ {e})∪ e•→, and
In′ = (In ∪ e→+)\ e→%.
In projected graph, we have marking projected from global graph, according to
def 5.1 as M|δ = (Ex|δ,Re|δ, In|δ). The result of executing event e in projected
graph will be a marking, let us say M′′|δ = M|δ ⊕G|δ e, then we have to prove that
M′′|δ = M′|δ.
Let us say that M′′|δ = (Ex′′|δ,Re′′|δ, In

′′
|δ), and since in the projected graph we have

M′′|δ = M|δ ⊕G|δ e, we can infer from the def 3.1, Ex′′|δ = Ex|δ ∪ {e},Re′′|δ =

(Re|δ \ {e})∪ e•→|δ, and In′′|δ = (In|δ ∪ e→+|δ)\ e→%|δ.
In order to prove this equivalence of M′′|δ = M′|δ, we will show that Ex′′|δ = Ex′|δ,
Re′′|δ = Re′|δ and In′′|δ = In′|δ individually as follows,

(i) To prove: Ex′′|δ = Ex′|δ
Let us start with Ex′′|δ
Ex′′|δ = Ex|δ ∪ {e}
= (Ex ∩ E|δ) ∪ {e} from def 5.1-iiia
= (Ex ∪ {e}) ∩ (E|δ ∪ {e})
= Ex′ ∩ E|δ
= Ex′|δ
Hence we can conclude that Ex′′|δ = Ex′|δ.

(ii) To prove: Re′′|δ = Re′|δ
Let us start with Re′′|δ

Re′′|δ = (Re|δ \ {e})∪ e•→|δ
=
(
(Re ∩ (δE∪ →� δE)) \ {e}

)
∪ e•→|δ from def 5.1-iiib

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ e•→|δ (set relative complements)

=
(
(Re \ {e}) ∩ (δE∪ →� δE)

)
∪ (e•→ ∩(δE∪ →� δE)) using lemma A.1

=
(
(Re \ {e})∪ e•→

)
∩ (δE∪ →� δE)

= Re′ ∩ (δE∪ →� δE)
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= Re′|δ according to def 5.1-iiib.
Hence we can conclude that Re′′|δ = Re′|δ.

(iii) To prove: In′′|δ = In′|δ
Let us starts with In′′|δ and show that it will be equal to the projection over

included set from global graph (In′|δ).
In′′|δ = (In|δ∪ e→+|δ)\ e→%|δ
In′′|δ =

(
(In ∩ (δE∪ →• δE∪ →� δE))∪ e→+|δ

)
\ e→%|δ from def 5.1-iiic.

In′′|δ =
(
(In ∩ (δE∪ →• δE∪ →� δE)) ∪ (e→+ ∩(δE∪ →• δE∪ →� δE))

)
\

(e→% ∩(δE∪ →• δE∪ →� δE)) using lemmas A.2 and A.3
In′′|δ =

(
(In∪ e→+) ∩ (δE∪ →• δE∪ →� δE)

)
\ (e→% ∩(δE∪ →• δE∪ →�

δE)).
In′′|δ =

(
(In∪ e→+)\ e→%

)
∩ (δE∪ →• δE∪ →� δE).

In′′|δ = (In′) ∩ (δE∪ →• δE∪ →� δE).
In′′|δ = In′|δ.
Hence we can conclude that In′′|δ = In′|δ.

From (i), (ii) and (iii), we have proved that Ex′′|δ = Ex′|δ, Re′′|δ = Re′|δ and In′′|δ = In′|δ
and there by we can conclude that M′′ = M′|δ.
Therefore the proposition: for e ∈ E|δ (and a 6∈ δL) it holds that M `G e∧M⊕Ge =
M′ implies M|δ ⊕G|δ e = M′|δ is proved.

Proof of Proposition 5.1.1. Let G = (E,Mt,→•, tc, •→, tr,→�,→+,→%, L, l)
be a Timed DCR Graph and G|δ its projection with respect to a projection param-
eter δ = (δE, δL). Then, for e ∈ δE and a ∈ δL it holds that Mt `G e ∧Mt ⊕G e =
Mt
′ ∧Mt

′
|δ = Mt

′′ if and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt
′′.

In order to prove the proposition, we have to show that the proposition in both
directions.

(G→P) for e ∈ δE and a ∈ δL. Mt `G e ∧ Mt ⊕G e = Mt
′ ∧ Mt

′
|δ = Mt

′′ =⇒
Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt

′′.
We will split the proof into 2 steps:

(A) Mt `G e =⇒ Mt|δ `G|δ e
From def 3.3, we have
Mt `G e =⇒ M `G′ e ∧ ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′).

M `G′ e has been proved in the (G→P)(A) part of the proof of propo-

sition A.1, therefore we have to show that ∀e′ ∈ In.e′
k→• e =⇒ k ≤
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tex(e
′) implies that ∀e′ ∈ In|δ.e

′ k→•|δ e =⇒ k ≤ tex|δ(e
′), where

e′
k→•|δ e =def e

′ →•|δ e and tc|δ(e, e′) = k.

∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex(e

′)

= ∀e′ ∈ In.e′
k→•|δ e =⇒ k ≤ tex(e

′), from def 5.1-iv

= ∀e′ ∈ In|δ.e
′ k→•|δ e =⇒ k ≤ tex(e

′), from def 5.1-iiic

= ∀e′ ∈ In|δ.e
′ k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex), by definition of
tex

= ∀e′ ∈ In|δ.e
′ k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex ∩ δE), since
M|δ `G′ e ∧ e′ ∈ In|δ, it preserves the tex behavior

= ∀e′ ∈ In|δ.e
′ k→•|δ e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex|δ), from def 5.1-
iiia
= ∀e′ ∈ In|δ.e

′ k→•|δ e =⇒ k ≤ tex|δ(e
′) from def 5.1-iiid.

Hence proved.

(B) To prove: Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′ =⇒ Mt|δ ⊕G|δ e = Mt
′′

From def. 3.3 we have Mt⊕Ge =def

(
(Ex,Re, In)⊕Ge, t′ex, t′re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We proved the (Ex,Re, In)⊕G e part in the (G→P)(B) part of the proof
of proposition A.1. We then need to show that (tex

′)|δ =⇒ tex
′′ and

that (tre
′)|δ =⇒ tre

′′

(tex
′)|δ(e

′)
= t′ex(e

′) if e′ ∈ Ex′|δ, according to def 5.1-iiid

=

({
0 if e′ = e

tex(e
′) otherwise

)
if e′ ∈ (Ex ∪ {e}) ∩ E|δ, according to

def 3.3, and def 5.1-iiia

=

{
0 if e′ = e ∧ e′ ∈ (Ex ∪ {e}) ∩ E|δ

tex(e
′) if e′ ∈ (Ex ∪ {e}) ∩ E|δ

, by moving the projec-

tion inward
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But we know that if e′ = e, trivially e ∈ Ex ∪ {e} and e ∈ E|δ, by
def 5.1-i. Moreover, the second branch will be used only if e′ 6= e,
therefore

=

{
0 if e′ = e

tex(e
′) if e′ ∈ (Ex ∩ E|δ)

= tex
′′(e′), according to def 5.1-iiia, and def 3.3

(tre
′)|δ(e

′)
= t′re(e

′) if e′ ∈ Re′|δ, according to def 5.1-iiie

=

({
k if e

k•→ e′

tre(e
′) otherwise

)
if e′ ∈ Re′|δ, according to def 3.3

=

{
k if e

k•→|δ e′ ∧ e′ ∈ Re′|δ
tre(e

′) if e′ ∈ Re′|δ
, according to def 5.1-vi and mov-

ing the projection inward

=

{
k if e

k•→|δ e′ ∧ e′ ∈ ((Re \ {e}) ∪ e•→) ∩ (δE∪ →� δE)

tre(e
′) if e′ ∈ ((Re \ {e}) ∪ e•→) ∩ (δE∪ →� δE)

,

according to def 5.1-iiib and def 3.1

But we know that if e
k•→|δ e′, trivially e′ ∈ e •→, and also that the

second branch will be used only if (e, e′) 6∈•→|δ, therefore

=

{
k if e

k•→|δ e′

tre(e
′) if e′ ∈ Re ∩ (δE∪ →� δE)

=

{
k if e

k•→|δ e′

tre|δ(e
′) otherwise

, by def 5.1-vi, and def 5.1-iiie

= tre
′′(e′), according to def 3.3

Since we have proved both parts: ( (G→P)-A and (G→P)-B ), the proposi-
tion Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′ =⇒ Mt|δ ⊕G|δ e = Mt
′′ holds.

(P→G) for e ∈ δE and a ∈ δL. Mt|δ `G|δ e ∧ Mt|δ ⊕G|δ e = Mt
′′ =⇒ Mt `G

e ∧Mt ⊕G e = Mt
′ ∧Mt

′
|δ = Mt

′′

Again, we will split the proof into 2 parts.

(A) Mt|δ `G|δ e =⇒ Mt `G e
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From def 3.3, we have
Mt `G e =⇒ M `G′ e ∧ ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′).

M|δ `G′ e has been proved in the (P→G)(A) part of the proof of propo-

sition A.1, therefore we have to show that ∀e′ ∈ In|δ.e
′ k→•|δ e =⇒

k ≤ tex|δ(e
′) implies that ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′), where

e′
k→• e =def e

′ →• e and tc(e, e′) = k.

∀e′ ∈ In|δ.e
′ k→•|δ e =⇒ k ≤ tex|δ(e

′)

= ∀e′ ∈ In.e′
k→•|δ e =⇒ k ≤ tex|δ(e

′) from A.1-i

= ∀e′ ∈ In.e′
k→• e =⇒ k ≤ tex|δ(e

′) from A.1-ii

= ∀e′ ∈ In.e′
k→• e =⇒ k ≤ (tex(e

′) if e′ ∈ Ex|δ), according to
def 5.1-iiid
= ∀e′ ∈ In.e′

k→• e =⇒ k ≤ tex(e
′) since M `G′ e∧e′ ∈→• e∧e′ ∈

In =⇒ e′ ∈ Ex|δ.
Hence proved.

(B) Mt|δ ⊕G|δ e = Mt
′′ =⇒ Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′

From def. 3.3 we have
Mt ⊕G e =def

(
(Ex,Re, In)⊕G e, t′ex, t′re

)
, where

(i) t′ex(e
′) =

{
0 if e′ = e

tex(e
′) otherwise

(ii) t′re(e
′) =

{
k if e

k•→ e′

tre(e
′) otherwise

We proved the (Ex,Re, In)⊕G e part in the (P→G)(B) part of the proof
of proposition A.1. We then need to show that tex′′ =⇒ (tex

′)|δ and
that tre′′ =⇒ (tre

′)|δ

tex
′′(e′)

=

{
0 if e′ = e

tex|δ(e
′) otherwise

, according to def 3.3 and considering that if

e′ 6= e, the underlying tex behaves exactly like tex|δ

=

{
0 if e′ = e

tex(e
′) if e′ ∈ Ex|δ

, according to def 5.1-iiid
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=

({
0 if e′ = e

tex(e
′) otherwise

)
if e′ ∈ (Ex|δ)∪{e}, since the overall func-

tion will continue to behave the same
= t′ex(e

′) if e′ ∈ (Ex∩ δE)∪ {e}, according to def 3.1, and def 5.1-iiia
= t′ex(e

′) if e′ ∈ (Ex ∪ {e}) ∩ (δE ∪ {e})
= t′ex(e

′) if e′ ∈ Ex′|δ, according to def 3.1, and def 5.1-iiia
= (tex

′)|δ(e
′), according to def 3.3

tre
′′(e′)

=

{
k if e

k•→|δ e′

tre|δ(e
′) otherwise

, according to def 3.3 and considering that

if (e, e′) 6∈•→|δ, the underlying tre behaves exactly like tre|δ

=

{
k if e

k•→|δ e′

tre(e
′) if e′ ∈ Re|δ

, according to def 5.1-iiie({
k if e

k•→ e′

tre(e
′) otherwise

)
if e′ ∈ (Re|δ \ {e}) ∪ e •→|δ, according to

def 5.1-vi, and since the overall function will continue to behave the
same
= tre

′(e′) if e′ ∈ (Re|δ \ {e}) ∪ e•→|δ, according to def 3.3
= tre

′(e′) if e′ ∈ ((Re ∩ (δE∪ →� δE) \ {e}) ∪ e •→|δ), according to
def 5.1-iiib
= tre

′(e′) if e′ ∈ ((Re \ {e}) ∪ e•→|δ) ∩ (δE∪ →� δE)
= tre

′(e′) if e′ ∈ Re′|δ, according to def 3.1, and def 5.1-vi
= (tre

′)|δ(e
′), according to def 5.1-iiie

Since we have proved both parts: ( (P→G)-A and (P→G)-B ), the propo-
sition for e ∈ δE and a ∈ δL. Mt|δ `G|δ e ∧ Mt|δ ⊕G|δ e = Mt

′′ =⇒
Mt `G e ∧Mt ⊕G e = Mt

′ ∧Mt
′
|δ = Mt

′′ holds.

Finally, we have proved the proposition in both ways
(
(G→P) and (P→G)

)
,

therefore the proposition: for e ∈ δE and a ∈ δL it holds that Mt `G e∧Mt⊕G e =
Mt
′ ∧Mt

′
|δ = Mt

′′ if and only if Mt|δ `G|δ e ∧Mt|δ ⊕G|δ e = Mt
′′ holds.

Proof of Proposition 5.1.2. Follows trivially from result of proposition A.2.

48



Proof of Proposition 5.1.3. Considering the result of proposition A.3, since the
marking of the underlying DCR Graph is the same, this proposition is proved by
the result from the part (P→G)-(B) of proposition 1.
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