
Dynamic Condition Response Graphs
for Trustworthy Adaptive Case Management

Thomas Hildebrandt1, Morten Marquard2,
Raghava Rao Mukkamala1, and Tijs Slaats1,2,�

1 IT University of Copenhagen, Rued Langgaardsvej 7, 2300 Copenhagen, Denmark
{hilde,rao,tslaats}@itu.dk

http://www.itu.dk
2 Exformatics A/S, Lautrupsgade 13, 2100 Copenhagen, Denmark

{mmq,ts}@exformatics.com
http://www.exformatics.com

Abstract. By trustworthy adaptive case management we mean that it should be
possible to adapt processes and goals at runtime while guaranteeing that no dead-
locks and livelocks are introduced. We propose to support this by applying a
formal declarative process model, DCR Graphs, and exemplify its operational se-
mantics that supports both run time changes and formal verification. We show
how these techniques are being implemented in industry as a component of the
Exformatics case management tools. Finally we discuss the planned future work,
which will aim to allow changes to be tested for conformance wrt policies spec-
ified either as linear time logic (LTL) or DCR Graphs, extend the language with
time and data and offer extended support for cross-organizational case manage-
ment systems.

Introduction

Adaptive case management (ACM) processes are characterized as unpredictable, emer-
gent and individual in nature and typically being carried out by knowledge work-
ers [8,11]. At the same time, many case management processes (e.g. in healthcare or the
financial sector) are of a critical nature and subject to regulations, demands for visibility
and efficiency.

Consequently, trustworthy adaptive case management should allow the case workers
to iteratively adapt/model the process during its execution, possibly by combining and
adapting process fragments [9] obtained from repositories, and verify if the current
process description can indeed fulfill the (currently identified) goals, without violating
any of the (current) regulations or rules.

In the present paper we show how Dynamic Condition Response Graphs (DCR
Graphs) [1–3] can be used for the specification and trustworthy, adaptive execution of
case management processes. DCR Graphs is a formal, declarative process modeling no-
tation introduced in the Trustworthy Pervasive Healthcare Services (www.TrustCare.dk)
research project as described in the third author’s PhD thesis [6], and currently being

� Authors listed alphabetically. This research is supported by the Danish Research Agency
through an industrial PhD Grant.

Y.T. Demey and H. Panetto (Eds.): OTM 2013 Workshops, LNCS 8186, pp. 166–171, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.itu.dk
http://www.exformatics.com


Dynamic Condition Response Graphs for Trustworthy Adaptive Case Management 167

embedded in the Exformatics case management tools [10] as part of the industrial PhD
project carried out by the last author.

Declarative process notations, such as Declare [12] (based on templates formalized
as LTL formulae) and the Guard-Stage-Milestone model [5] (based on ECA-like rules)
have been put forward as offering flexibility in execution and modelling. By declara-
tive it is usually meant that the notation is aimed at describing what is to be achieved,
i.e. goals and regulations. This is opposed to imperative process notations aiming at
describing how the goal is to be achieved.

Similar to other declarative models any DCR Graph can be mapped to a (Büchi) au-
tomaton describing the possible executions and which executions fulfill the goal of the
process. This mapping makes it possible to formally verify the process using standard
model-checking tools such as the SPIN model checker.

However, if the process is to be adapted/changed during its execution, the com-
pilation of a declarative description into a lower level, imperative description (before
execution) constitutes a problem. In case the change is applied to the original declara-
tive description, it also affects the process as it was before its execution. On the other
hand, if the change is applied to the imperative description of the process being exe-
cuted, the change must be expressed in terms of the operational model, which requires
a non-trivial translation of the meaning of the change between the declarative and the
operational model.

A key feature of the DCR Graph notation is that it allows a formal operational se-
mantics in which the intermediate states of running processes are described by a simple
marking of the graph, that can also be understood by the case worker. This allows for
changes to the declarative description to be applied and take effect in intermediate states
of the execution as we will exemplify below.

State of the Art

DCR Graphs by Example. Fig. 1(a) shows an example of a DCR Graph model de-
signed in the DCR Graph editor developed at Exformatics. It represents an invoice
workflow with just three events: Enter Invoice Data, Approve and Pay Invoice. The
events are represented as boxes with their assigned roles given in small ears at the top.
The example process declares two roles: Administration (Adm), representing the ad-
ministration office of a company and Responsible (Res) the person responsible for the
invoice. The administration office has access to the tasks Enter Invoice Data and Pay
Invoice and the responsible has access to the task Approve.

Unconstrained events in a DCR Graph can be executed any number of times and
in any order. In order to eliminate undesirable behavior in the process, a DCR Graph
contains a set of constraints defined using five different kinds of relations between the
events, named the condition (→•), response (•→), milestone (→�), inclusion (→+)
and exclusion (→%) respectively. The use of the condition, response and milestone
relations is illustrated i Fig. 1(a), where we have declared three constraints on the work-
flow. The first constraint is that we can not pay an invoice before data has been entered.
This is declared by the condition relation (an arrow with a bullet at its tip) from En-
ter Invoice Data to Pay Invoice. But note that we can enter data twice before pay-
ing the invoice, and that Pay Invoice is not required to happen when it gets enabled.



168 T. Hildebrandt et al.

The second constraint is that an approval must eventually follow when invoice data has
been entered, which is declared by the response relation (an arrow with a bullet at its
start) from Enter invoice Data to Approve. Note that this constraint is also fulfilled if
several Enter Invoice Data events are followed by a single Approve event. Finally, the
third constraint is that if an approval is pending, i.e. required but not yet done, then it is
not allowed to pay the invoice. This constraint is declared by the milestone relation (an
arrow with a diamond at its tip) from Approve to Pay Invoice. The stop sign at the Pay
Invoice event is not part of the graph, but indicates that the event is not enabled in the
current marking (where no events have been executed and thus the condition constraint
is not satisfied).

(a) DCR Graph for invoice
workflow

(b) Marking after data (c) Marking after approve

Fig. 1. Examples of DCR Graphs with markings

If Enter Invoice Data is executed, the marking of the graph changes to the one in
Fig. 1(b). The checkmark inside Enter Invoice Data shows that it has been executed,
the exclamation mark inside Approve shows that it is required to be executed before the
workflow has reached its goal. Now, Enter Invoice Data can be executed again without
changing the marking, since it does not record how many times an event has been
executed. Pay Invoice is still not enabled, even though the condition constraint that
Enter Invoice Data should be executed first is fulfilled, the milestone relation disables
Pay Invoice since Approve is required to happen. Now, if Approve is executed, the
marking changes to the one in Fig 1(c) where all events are enabled, but no events are
required.

The final two constraints are the dynamic exclude (→%) and its dual the dynamic
include (→+). The dynamic exclude relation is used to remove an event dynamically
from the workflow when another event happens, and the include relation to add an
event (back) to the workflow. Excluded events can never be executed, but neither are
they considered when evaluating enabledness or when evaluating whether the workflow
is completed.

Fig. 2(a) shows an adaptation of the invoice process that makes use of the dynamic
inclusion and exclusion relations. The Approve event is adapted to contain three sub
events: Responsible Approve, Manager Approve and CEO Approve. The meaning
of the relations to and from Approve is simply that they relate to all sub events of Ap-
prove. The sub events also inherited the response marking and are thus all required.



Dynamic Condition Response Graphs for Trustworthy Adaptive Case Management 169

(a) Adapted process with excluded
events

(b) After Responsible Approval

Fig. 2. Example of nested events and dynamically included and excluded events

However, three other events have also been added to represent the decision logic be-
hind the detailed approval process: Amount < 100, Amount >= 100 and Amount
>= 1000. These events are to be executed by the system when the amount (entered as
part of the Enter Invoice Data event) changes and the constraint is satisfied. For the
sake of the example, we assume the amount entered was less than 100, so the Amount
< 100 event has been executed. This resulted in Manager Approve and CEO Ap-
prove to be excluded, as represented by the dashed boxes. Fig. 2(b) shows the resulting
marking if Responsible Approve is executed. Pay Invoice is enabled since the re-
quired responses on the excluded events Manager Approve and CEO Approve are
not considered when the milestone relation is evaluated.

Adaptive DCR Graphs. As shown in the previous examples, when using DCR Graphs
we maintain information on the original events and relations of the model at run-
time. Executing a DCR Graph simply results in a new DCR Graph with a (optionally)
changed marking. This makes it easy to adapt the model at runtime: one can add or
remove relations and events and continue executing afterwards. In recent work [7], we
investigated this in more detail and formalized a number of operations for adding/re-
moving events and relations to DCR Graphs and composing process fragments. In the
same paper we presented techniques for checking DCR Graphs for dead- and live-lock,
and showed how these techniques can be used for safely adapting DCR Graphs at
runtime.

DCR Graphs at Exformatics. DCR Graphs have been adopted by our industrial part-
ner Exformatics A/S as the underlying formal model for workflows in their state-of-
the-art Electronic Case Management (ECM) system, which is used by various Danish
and international clients, both in the private and public sector, for case- and
project-management.



170 T. Hildebrandt et al.

Exformatics has developed a number of tools to support the modeling and execu-
tion of DCR Graphs. These tools are stand-alone and can be used without requiring
installation of their Electronic Case Management product. The tools include several
webservices for execution, verification, storage and visualization of DCR Graphs based
workflows and a graphical editor for modelling, simulation and visualization of DCR
Graphs. All diagrams in this paper have been produced by the editor, which also sup-
ports adaptation during a simulation. However, assignment of data values as part of
events and the automatic execution of events based on changes in data values is not
supported yet, i.e. it must so far be manually simulated by the designer.

Future Work

Currently we are extending the verification techniques for DCR Graphs to allow for
checking any arbitrary property, defined as either a LTL formula or a DCR Graph. This
technique will allow us to verify that run-time adaptations of a process model continue
to adhere to a set of given policies. We are also exploring different ways of handling
data within DCR Graphs, inspired by different application domains that have differ-
ent requirements to the processes being modelled. The first proposal [6, 10] has been
described in the examples. The second proposal is aimed at cross-organizational work-
flows where there is no central location of the data that all parties have access too. In
this approach events are parameterized by variables, for example an employee ID, and
occurrences of the same event with different parameters are considered distinct. Rela-
tions in this approach are relative to the parameters on the events, ie if Enter Invoice
Data[employeeId] requires Approve[employeeId] as a response, then an occurrence
of Enter Invoice Data for a specific employee requires approval by that same em-
ployee. The third approach is based on a hybrid model that combines DCR Graphs
with Coloured Petri nets. [13] The motivation for the hybrid model was an attempt
to combine declarative and imperative workflow languages, but it also allows for data
constraints to be added to DCR Graphs by using a language that is already popular
as a formal foundation for workflows. In future work we will select the approach that
best fits to adaptive processes and extend the adaptation operators and verification tech-
niques to also cover this data variant. In addition we will extend the aforementioned
techniques to work on timed DCR Graphs [4]. Finally an algorithm for safely distribut-
ing the execution of a process has been developed [3]. This can be used to provide
a global description of a collaborative process, which can then be distributed on dif-
ferent participants. In future work we plan to extend the theory of distributed DCR
Graphs with a behavioral type system, which will allow us to more efficiently verify
cross-organizational adaptive processes.

Conclusion

We have outlined by an example the declarative primitives and operational semantics
for DCR Graphs and how the model could be used as the foundation for trustworthy
adaptive case management. The declarative nature of the model provides flexibility in
execution, i.e. it avoids the usual overspecification of flow graphs, as well as flexibil-
ity with respect to adaptations: Process fragments can be composed and events and



Dynamic Condition Response Graphs for Trustworthy Adaptive Case Management 171

constraints can be added and removed through three basic adaptation operations, with-
out breaking the syntactic validity of the graph, and correspond to the identification of
new activities and rules in an emergent process. The representation of the state of a
process in terms of a marking that can be understood by the case worker means that
adaptations can be made to partially executed processes. The formal semantics and
mapping to Büchi-automata (also of intermediate process states), makes it possible to
formally verify if it is still possible to achieve the goal of the process after adaptation.
We also showed how the work is being implemented by our industrial partner in their
ECM system. Finally we discussed planned future work that will make DCR Graphs
even more suitable for supporting trustworthy adaptive case management processes.

References

1. Hildebrandt, T., Mukkamala, R.R.: Declarative event-based workflow as distributed dynamic
condition response graphs. In: PLACES. EPTCS, vol. 69, pp. 59–73 (2011)

2. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Nested dynamic condition response graphs. In:
Arbab, F., Sirjani, M. (eds.) FSEN 2011. LNCS, vol. 7141, pp. 343–350. Springer, Heidel-
berg (2012)

3. Hildebrandt, T., Mukkamala, R.R., Slaats, T.: Safe distribution of declarative processes. In:
Barthe, G., Pardo, A., Schneider, G. (eds.) SEFM 2011. LNCS, vol. 7041, pp. 237–252.
Springer, Heidelberg (2011)

4. Hildebrandt, T., Mukkamala, R.R., Slaats, T., Zanitti, F.: Contracts for cross-organizational
workflows as timed dynamic condition response graphs. Journal of Logic and Algebraic
Programming (JLAP) (May 2013),
http://dx.doi.org/10.1016/j.jlap.2013.05.005

5. Hull, R.: Formal study of business entities with lifecycles: Use cases, abstract models, and
results. In: Bravetti, T., Bultan, M. (eds.) 7th International Workshop on Web Services and
Formal Methods. LNCS, vol. 6551 (2010)

6. Mukkamala, R.R.: A Formal Model For Declarative Workflows: Dynamic Condition
Response Graphs. PhD thesis, IT University of Copenhagen (June 2012),
http://www.itu.dk/people/rao/phd-thesis/
DCRGraphs-rao-PhD-thesis.pdf

7. Mukkamala, R.R., Hildebrandt, T., Slaats, T.: Towards trustworthy adaptive case manage-
ment with dynamic condition response graphs. In: Proceedings of the 17th IEEE Interna-
tional EDOC Conference, EDOC (2013)

8. Mundbrod, N., Kolb, J., Reichert, M.: Towards a system support of collaborative knowledge
work. In: La Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 31–42.
Springer, Heidelberg (2013)

9. Sirbu, A., Marconi, A., Pistore, M., Eberle, H., Leymann, F., Unger, T.: Dynamic composition
of pervasive process fragments. In: Proceedings of the 2011 IEEE International Conference
on Web Services, ICWS 2011, pp. 73–80. IEEE Computer Society, Washington, DC (2011)

10. Slaats, T., Mukkamala, R.R., Hildebrandt, T., Marquard, M.: Exformatics declarative case
management workflows as dcr graphs. In: Daniel, F., Wang, J., Weber, B. (eds.) BPM 2013.
LNCS, vol. 8094, pp. 339–354. Springer, Heidelberg (2013)

11. Swenson, K.D.: Mastering the Unpredictable: How Adaptive Case Management Will Revo-
lutionize the Way That Knowledge Workers Get Things Done. Meghan-Kiffer Press (2010)

12. van der Aalst, W.M.P., Pesic, M., Schonenberg, H.: Declarative workflows: Balancing be-
tween flexibility and support. Computer Science - R&D 23(2), 99–113 (2009)

13. Westergaard, M., Slaats, T.: Mixing paradigms for more comprehensible models. In: Daniel,
F., Wang, J., Weber, B. (eds.) BPM 2013. LNCS, vol. 8094, pp. 283–290. Springer, Heidel-
berg (2013)

http://dx.doi.org/10.1016/j.jlap.2013.05.005
http://www.itu.dk/people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf
http://www.itu.dk/people/rao/phd-thesis/DCRGraphs-rao-PhD-thesis.pdf

	Dynamic Condition Response Graphsfor Trustworthy Adaptive Case Management
	References




