
A Formal Model For Declarative Workflows
Dynamic Condition Response Graphs

Raghava Rao Mukkamala

A PhD Dissertation
Presented to the Faculty of the IT University of Copenhagen
in Partial Fulfillment of the Requirements of the PhD Degree

Advisor

Dr. Thomas T. Hildebrandt, PhD IT University of Copenhagen, Denmark

Evaluation Committee

Dr. Andrzej Wąsowski, PhD IT University of Copenhagen, Denmark
Dr. Richard Hull, PhD IBM T.J. Watson Research Center, NY, USA
Dr. Hagen Völzer, PhD IBM Research - Zurich, Switzerland

IT University of Copenhagen February 2012

C
ur

re
nt

bu
si

ne
ss

pr
oc

es
s

te
ch

no
lo

gy
is

pr
et

ty
go

od
in

su
pp

or
tin

g
w

el
l-

st
ru

ct
ur

ed
bu

si
ne

ss
pr

oc
es

se
s

an
d

ai
m

at
ac

hi
ev

in
g

a
fix

ed
go

al
by

ca
rr

yi
ng

ou
t

an
ex

ac
t

se
t

of
op

er
at

io
ns

.
In

co
nt

ra
st

,
th

os
e

ex
ac

t
op

er
at

io
ns

ne
ed

ed
to

fu
lfi

ll
a

bu
si

-
ne

ss
pr

oc
es

s/
w

or
kfl

ow
m

ay
no

tb
e

al
w

ay
s

po
ss

ib
le

to
fo

re
se

e
in

hi
gh

ly
co

m
pl

ex
an

d
dy

na
m

ic
en

vi
ro

nm
en

ts
lik

e
he

al
th

ca
re

an
d

ca
se

m
an

ag
em

en
ts

ec
to

rs
,w

he
re

th
e

pr
oc

es
se

s
ex

hi
bi

ta
lo

to
f

un
ce

rt
ai

nt
y

an
d

un
ex

pe
ct

ed
be

ha
vi

or
an

d
th

er
eb

y
re

qu
ir

e
hi

gh
de

gr
ee

of
fle

xi
bi

lit
y.

Se
ve

ra
lr

es
ea

rc
h

gr
ou

ps
ha

ve
su

gg
es

te
d

de
cl

ar
-

at
iv

e
m

od
el

s
as

a
go

od
ap

pr
oa

ch
to

ha
nd

le
su

ch
ad

-h
oc

na
tu

re
by

de
sc

ri
bi

ng
co

n-
tr

ol
flo

w
im

pl
ic

itl
y

an
d

th
er

e
by

of
fe

ri
ng

gr
ea

te
rfl

ex
ib

ili
ty

to
th

e
en

d
us

es
.

T
he

fir
st

co
nt

ri
bu

tio
n

of
th

is
Ph

D
th

es
is

is
to

fo
rm

al
iz

e
th

e
co

re
pr

im
iti

ve
s

of
a

de
cl

ar
at

iv
e

w
or

kfl
ow

m
an

ag
em

en
ts

ys
te

m
em

pl
oy

ed
by

ou
r

in
du

st
ri

al
pa

rt
ne

r
R

es
ul

tm
ak

er
an

d
fu

rt
he

r
de

ve
lo

p
it

as
a

ge
ne

ra
lf

or
m

al
m

od
el

fo
r

sp
ec

ifi
ca

tio
n

an
d

ex
ec

ut
io

n
of

de
cl

ar
at

iv
e,

ev
en

t-
ba

se
d

bu
si

ne
ss

pr
oc

es
se

s,
as

a
ge

ne
ra

liz
at

io
n

of
a

co
nc

ur
re

nc
y

m
od

el
,t

he
cl

as
si

c
ev

en
t

st
ru

ct
ur

es
.

T
he

m
od

el
al

lo
w

s
fo

r
an

in
tu

iti
ve

op
er

at
io

na
l

se
m

an
tic

s
an

d
m

ap
pi

ng
of

ex
ec

ut
io

n
st

at
e

by
a

no
tio

n
of

m
ar

ki
ng

s
of

th
e

gr
ap

hs
an

d
w

e
ha

ve
pr

ov
ed

th
at

it
is

su
ffi

ci
en

tly
ex

pr
es

si
ve

to
m

od
el

w
-r

eg
ul

ar
la

ng
ua

ge
s

fo
ri

nfi
ni

te
ru

ns
.T

he
m

od
el

ha
s

be
en

ex
te

nd
ed

w
ith

ne
st

ed
su

b-
gr

ap
hs

to
ex

pr
es

s
hi

er
ar

ch
y,

m
ul

ti-
in

st
an

ce
su

b
pr

oc
es

se
s

to
m

od
el

re
pl

ic
at

ed
be

ha
vi

or
an

d
su

pp
or

tf
or

da
ta

.

T
he

se
co

nd
co

nt
ri

bu
tio

n
of

th
e

th
es

is
is

to
pr

ov
id

e
a

fo
rm

al
te

ch
ni

qu
e

fo
r

sa
fe

di
st

ri
bu

tio
n

of
co

lla
bo

ra
tiv

e,
cr

os
s-

or
ga

ni
za

tio
na

lw
or

kfl
ow

s
de

cl
ar

at
iv

el
y

m
od

-
el

ed
in

D
C

R
gr

ap
hs

ba
se

d
on

a
no

tio
n

of
pr

oj
ec

tio
ns

.
T

he
ge

ne
ra

lit
y

of
th

e
di

st
ri

bu
tio

n
te

ch
ni

qu
e

al
lo

w
s

fo
r

fin
e

tu
ne

d
pr

oj
ec

tio
ns

ba
se

d
on

fe
w

se
le

ct
ed

ev
en

ts
/la

be
ls

,
at

th
e

sa
m

e
tim

e
ke

ep
in

g
th

e
de

cl
ar

at
iv

e
na

tu
re

of
th

e
pr

oj
ec

te
d

gr
ap

hs
(w

hi
ch

ar
e

al
so

D
C

R
gr

ap
hs

).
W

e
ha

ve
al

so
pr

ov
id

ed
se

m
an

tic
s

fo
r

di
s-

tr
ib

ut
ed

ex
ec

ut
io

ns
ba

se
d

on
sy

nc
hr

on
ou

s
co

m
m

un
ic

at
io

n
am

on
g

ne
tw

or
k

of
pr

oj
ec

te
d

gr
ap

hs
an

d
pr

ov
ed

th
at

gl
ob

al
an

d
di

st
ri

bu
te

d
ex

ec
ut

io
ns

ar
e

eq
ui

va
-

le
nt

.

Fu
rt

he
r,

to
su

pp
or

t
m

od
el

in
g

of
pr

oc
es

se
s

us
in

g
D

C
R

G
ra

ph
s

an
d

to
m

ak
e

th
e

fo
rm

al
m

od
el

av
ai

la
bl

e
to

a
w

id
er

au
di

en
ce

,w
e

ha
ve

de
ve

lo
pe

d
pr

ot
ot

yp
e

to
ol

s
fo

r
sp

ec
ifi

ca
tio

n
an

d
a

w
or

kfl
ow

en
gi

ne
fo

r
th

e
ex

ec
ut

io
n

of
D

C
R

G
ra

ph
s.

W
e

ha
ve

al
so

de
ve

lo
pe

d
to

ol
s

in
te

rf
ac

in
g

SP
IN

m
od

el
ch

ec
ke

r
to

fo
rm

al
ly

ve
ri

fy
sa

fe
ty

an
d

liv
en

es
s

pr
op

er
tie

s
on

th
e

D
C

R
G

ra
ph

s.
C

as
e

st
ud

ie
s

fr
om

he
al

th
ca

re
an

d
ca

se
m

an
ag

em
en

td
om

ai
ns

ha
ve

be
en

m
od

el
ed

in
D

C
R

G
ra

ph
s

to
sh

ow
th

at
ou

r
fo

rm
al

m
od

el
is

su
ita

bl
e

fo
r

m
od

el
in

g
th

e
w

or
kfl

ow
s

fr
om

th
os

e
dy

na
m

ic
se

ct
or

s.

T
hi

sP
hD

pr
oj

ec
ti

sf
un

de
d

by
th

e
D

an
is

h
St

ra
te

gi
c

R
es

ea
rc

h
C

ou
nc

il
th

ro
ug

h
th

e
Tr

us
tw

or
th

y
Pe

rv
as

iv
e

H
ea

lth
ca

re
Se

rv
ic

es
pr

oj
ec

t(
w

w
w

.tr
us

tc
ar

e.
eu

).

A Formal Model For Declarative Workflows: Dynamic Condition Response Graphs

Raghava Rao Mukkamala 2012

I
T

U
n

i
v

e
r
s

i
t
y

o
f

C
o

p
e

n
h

a
g

e
n

T
h

e
o

r
e

t
i
c
a

l
C

o
m

p
u

t
e

r
S

c
i
e

n
c
e

A
F

o
r
m

a
l

M
o
d

e
l

F
o
r

D
e
c
l
a
r
a
t
i
v
e

W
o
r
k

fl
o
w

s

D
y
n

a
m

i
c

C
o
n

d
i
t
i
o
n

R
e
s
p
o
n

s
e

G
r
a
p
h

s

R
ag

ha
va

R
ao

M
uk

ka
m

al
a

I
T

U
D

S
:

D
-
2

0
1

2
–

8
0

I
S

S
N

:
1

6
0

2
-
3

5
3

6

I
S

B
N

:
9

7
8

-
8

7
-
7

9
4

9
-
2

6
8

-
4

1

i
A Formal Model For Declarative WorkflowsDynamic Condition Response Graphs

Current business process technology is pretty good in supporting well-structured
business processes and aim at achieving a fixed goal by carrying out an exact set
of operations. In contrast, those exact operations needed to fulfill a business pro-
cess/workflow may not be always possible to foresee in highly complex and dynamic
environments like healthcare and case management sectors, where the processes ex-
hibit a lot of uncertainty and unexpected behavior and thereby require high degree
of flexibility. Several research groups have suggested declarative models as a good
approach to handle such ad-hoc nature by describing control flow implicitly and
there by offering greater flexibility to the end uses.

The first contribution of this PhD thesis is to formalize the core primitives of a
declarative workflow management system employed by our industrial partner Result-
maker and further develop it as a general formal model for specification and execution
of declarative, event-based business processes, as a generalization of a concurrency
model, the classic event structures. The model allows for an intuitive operational
semantics and mapping of execution state by a notion of markings of the graphs
and we have proved that it is sufficiently expressive to model ω-regular languages
for infinite runs. The model has been extended with nested sub-graphs to express
hierarchy, multi-instance sub processes to model replicated behavior and support for
data.

The second contribution of the thesis is to provide a formal technique for safe
distribution of collaborative, cross-organizational workflows declaratively modeled
in DCR graphs based on a notion of projections. The generality of the distribution
technique allows for fine tuned projections based on few selected events/labels, at
the same time keeping the declarative nature of the projected graphs (which are
also DCR graphs). We have also provided semantics for distributed executions based
on synchronous communication among network of projected graphs and proved that
global and distributed executions are equivalent.

Further, to support modeling of processes using DCR Graphs and to make the
formal model available to a wider audience, we have developed prototype tools for
specification and a workflow engine for the execution of DCR Graphs. We have also
developed tools interfacing SPIN model checker to formally verify safety and liveness
properties on the DCR Graphs. Case studies from healthcare and case management
domains have been modeled in DCR Graphs to show that our formal model is suitable
for modeling the workflows from those dynamic sectors.

This PhD project is funded by the Danish Strategic Research Council through the
Trustworthy Pervasive Healthcare Services project (www.trustcare.eu).

Acknowledgments
It would not have been possible to finish this thesis without the help of various people.

First of all, I would like to thank my supervisor, Thomas Hildebrandt, for his constant
support, guidance and encouragement throughout my PhD. Incidentally, Thomas was
also my master’s thesis supervisor in 2005, wherein he introduced process algebra
and Bigraphs to me . Then, I realized the amazing power of formal models for the first
time in my long IT career. I came from an IT background to do a PhD in application of
formal methods, therefore, in initial days, I was always not sure whether I would feel
comfortable in the formal methods. But he has been always supporting, encouraging
me to learn new things, had time and enormous patience for discussions with me. I
would be very grateful to him for all these years of working with him and also I am
quite happy that I could work with him for some more time.

Further, I would like to thank my co-author and fellow PhD student Tijs Slaats
for his support and his friendship. It has been always been a pleasure working with
him and looking forward for a productive forthcoming year working with him. Many
thanks to all the members of the Programming, Logics, and Semantics group at ITU
for fruitful and very good friendly working environment. Especially, I would like to
thank Hugo A. Lopez and Espen Højsgaard for sharing their thesis template, which
actually saved a lot of my time and made the thesis looking nice.

As part of my PhD, I visited the IBM T.J. Watson Research Center, New York, USA
in 2011 for couple months. I would like to thank Dr. Rick Hull for proving me an
opportunity to visit him and his group, which gave us a chance to study and relate
their work with our formal model. I also visited Microsoft Research India in 2010 for
three months. I would like to thank Dr. Sriram Rajamani for being the perfect host,
went far beyond his duties to offer me to share his cabin, and gave me a chance to
visit their Programming Languages and Tools group and experience their scintillating
work culture there.

Finally, my hearty thanks to my father and mother, who always wished me to go
for higher studies. I also wish to thank my sons Siddu and Rishi for their support
and their patience for not complaining even a bit when I was missing from the home
for many weekends before thesis deadline. Lastly, but not the least, I would like to
thank my wife Alivelu, without whose support it would’t have been possible to finish
my PhD. Many deep-felt thanks to her for her support and bearing with all my crazy
plans of going for PhD.

Raghava Rao Mukkamala
Copenhagen, February 29, 2012

Contents
Abstract i

Acknowledgments iii

Contents v

List of Tables ix

Listings xi

List of Figures xiii

1 Introduction 1
1.1 Brief Historical Perspective of Business Processes 2
1.2 Business Process Management and IT . 3

1.2.1 BPM Standardization Approaches 4
1.3 Why Formal Models? . 5
1.4 Motivation for Declarative Models . 6
1.5 Thesis Statement . 10

1.5.1 TrustCare Project . 10
1.5.2 Research Goal . 11

1.6 Thesis Outline . 13
1.6.1 List of Publications . 13
1.6.2 Chapters Outline . 15

2 Background 17
2.1 Resultmaker Online Consultant - A Declarative Workflow 17

2.1.1 Resultmaker Online Consultant - Formalization 18
2.1.2 Formalization using Linear Temporal Logic 24
2.1.3 Case Study: Healthcare Workflow 29
2.1.4 Preliminary conclusion to the case study 32
2.1.5 Conclusion . 38

2.2 DECLARE: A Constraint Based Approach For Flexible Workflows . . . 40
2.2.1 Process Modeling . 40
2.2.2 Process Execution . 41
2.2.3 Conclusion . 41

2.3 Event Structures . 43
2.3.1 Introduction . 43
2.3.2 Event Structures, Configurations 43
2.3.3 Conclusion . 47

2.4 Summary . 49

vi Contents
3 Dynamic Condition Response Graphs 51

3.1 Motivation . 51
3.1.1 DCR Graphs as generalized Event Structures 53

3.2 Related Work . 54
3.3 Dynamic Condition Response Graphs . 56

3.3.1 Condition Response Event Structures 56
3.3.2 DCR Graphs - Formal Semantics 60
3.3.3 Distributed Dynamic Condition Response Graphs 68
3.3.4 Infinite runs - From DCR Graphs to Büchi-automata 69

3.4 DCR Graphs - Graphical Notation . 73
3.5 Expressiveness of DCR Graphs . 78

3.5.1 Büchi Automaton . 78
3.5.2 Encoding of Büchi Automaton into DCR Graphs - Example . . 81
3.5.3 Bisimulation between Büchi and DCR Graph 83
3.5.4 Conclusion . 89

3.6 Summary . 89

4 Dynamic Condition Response Graphs - Extensions 91
4.1 Nested Dynamic Condition Response Graphs 91

4.1.1 Nested DCR Graphs by Healthcare Workflow Example 92
4.1.2 Nested DCR Graphs - Formal Semantics 95
4.1.3 Case Study: Case Management Example In Nested DCR Graphs

. 100
4.2 Nested DCR Graphs with Sub Processes 104

4.2.1 Formal definition of Nested DCR Graphs with sub processes . 104
4.2.2 Flattening of Nested DCR Graph with sub processes 108
4.2.3 Execution Sematics of DCR Graphs with Subprocesses 109

4.3 DCR Graphs with Data . 113
4.3.1 Nested DCR Graphs with Data . 115
4.3.2 Healthcare Example in DCR Graphs with Data 117

4.4 Summary . 119

5 Distribution of DCR Graphs 121
5.1 Introduction . 121
5.2 Related Work . 123
5.3 DCR Graphs - Projection and Composition 125

5.3.1 Projection . 125
5.3.2 Composition . 136
5.3.3 Safe Distributed Synchronous Execution of DCR Graphs 138
5.3.4 Distribution of Case Management Example 142

5.4 Distribution of Nested DCR Graphs . 147
5.4.1 Projections . 147
5.4.2 Distributed Execution in Nested DCR Graphs 149
5.4.3 Distribution of Healthcare Workflow 150

Contents vii
5.5 Summary . 156

6 Formal Verification, Tools and Implementation 159
6.1 Related Work . 159
6.2 Safety and Liveness for DCR Graphs . 161

6.2.1 Executions and Must Executions 161
6.2.2 Safety Properties . 163
6.2.3 Liveness Properties . 165

6.3 Formal Verification using SPIN . 167
6.3.1 Brief overview of SPIN and PROMELA lanaguage 168
6.3.2 Encoding DCR Graphs into PROMELA 172
6.3.3 Verification of Safety Properties 175
6.3.4 Verification of Liveness Properties 182

6.4 Formal Verification using ZING . 185
6.5 Prototype Tools . 186

6.5.1 DCRG Process Engine . 187
6.5.2 Process Repository . 189
6.5.3 Windows-based Graphical Editor 189
6.5.4 Web Client . 190
6.5.5 Model Checking Tool . 190
6.5.6 Serialization Format for DCR Graphs 191

6.6 Summary . 194

7 Conclusion and Future Work 197
7.1 Conclusion . 197
7.2 Contribution . 198
7.3 Future Work . 199

7.3.1 Extensions to Formal Model . 199
7.3.2 Relating to the other formal models 203

Appendix A PROMELA Code for Verification of Properties 209
A.1 PROMELA Code for Deadlock Free Property 209
A.2 PROMELA Code for Strongly Deadlock Free Property 214
A.3 PROMELA Code for Liveness Property . 219
A.4 PROMELA Code for Strongly Liveness Property 225

Appendix B Zing Code for Give Medicine Example 231

Bibliography 237

List of Tables
2.1 Loan application Process Matrix . 22
2.2 The Process Matrix at Run Time. 24

Listings
3.1 Formal representation of healthcare example in DCR Graphs 77
4.1 Formal specification of Healthcare Workflow in Nested DCR Graphs. . 97
4.2 Flatten DCR Graph for Healthcare Workflow from listing 4.1. 98
4.3 Formal specification of prescribe medicine example in Nested DCR Graphs

with subprocesses. 106
4.4 Flattened DCR graph for prescribe medicine example 109
4.5 Prescribe medicine example after execution of prescribe 111
5.1 Formal specification of arrange meeting arrangement example 143
5.2 Formal specification of projected DCR graphs for arrange meeting ex-

ample . 144
6.1 Overview of DCR Graph Xml . 191
6.2 DCRG specification in Xml . 192
6.3 DCRG Runtime in Xml . 194

List of Figures
1.1 The BPM lifecyle to compare Workflow Management and BPM [van der

Aalst et al. 2003] . 3
1.2 Give medicine example in Flow chart . 7
1.3 Declarative verses Imperative Approaches [van der Aalst & Pesic 2006a] 8
1.4 Give medicine example in DCR Graphs 9
1.5 TrustCare project research methodology 11

2.1 The Online Consultant Architecture. 19
2.2 Overview of the relation between research protocols/standard treat-

ment plans, local practice guidelines (standard plans) and flow charts.
General guidelines are use at the hospital, containing issues like the
treatment of diabetes. 31

2.3 Oncologic workflow in relation to chemotherapeutic treatment of pa-
tient. 32

2.4 Enablers and obstacles for digitalized clinical process support. 34
2.5 Information marked with * could be transferred from or registered au-

tomatically in another hospital information system (HIS) W= write, R
= read, N = denied access. 36

2.6 Nondeterministic behavior in events structures 45
2.7 Concurrency in events structures . 45
2.8 Process in labeled events structures . 46
2.9 Give medicine example in events structures 47

3.1 From Event Structures to DCR Graphs overview 53
3.2 Prescribe and Sign Example . 54
3.3 Encoding of conflict from CRES as mutual exclusion in DCR Graphs. . 64
3.4 The Büchi-automaton for DCR Graph from Fig. 3.6 annotated with

state information . 70
3.5 The Büchi-automaton with stratified view 72
3.6 Give Medicine Example . 73
3.7 Transition system for DCR graph from fig 3.6 74
3.8 Give Medicine Example with Check . 75
3.9 Runtime for Give Medicine Example from 3.8 75
3.10 Runtime for Give Medicine Example with Don’t trust from 3.8 76
3.11 Extended Give Medicine Example with milestone relation 77
3.12 Büchi-automaton Example . 81
3.13 DCR Graphfor Büchi-automaton in figure 3.12 82

4.1 Oncology Workflow as a nested DCR Graph 92
4.2 Oncology Workflow as a nested DCR Graph with runtime state 95

xiv List of Figures
4.3 Top level requirements of case management as a DCR Graph 100
4.4 Case Handling Process . 102
4.5 Case Handling Process Runtime . 104
4.6 Case Handling Process Runtime After Upload Document 105
4.7 Case Handling Process Runtime After Accept Dates 106
4.8 Prescribe medicine example with subprocesses 107
4.9 Flattened prescribe medicine example . 108
4.10 Prescribe medicine example with an instance of subprocess 112
4.11 Prescribe medicine example in DCR Graphs with data. 117

5.1 Key problems studied in related work . 123
5.2 Arrange meeting cross-organizational case management example . . . 142
5.3 . 143
5.4 Oncology Workflow as a nested DCR Graph 151
5.5 Projection over doctor’s role (D) . 153
5.6 Projection over nurse role (N and N1) . 154
5.7 Projection over control pharmacist role (CP) 155
5.8 Projection over pharmacy assistant role (PA) 155

6.1 A non-deadlock free DCR Graph . 164
6.2 Deadlock free DCR Graph . 164
6.3 Give Medicine example (deadlock free, live, but not strongly deadlock

free) . 165
6.4 State space for Give Medicine example (deadlock free, live, but not

strongly deadlock free) . 166
6.5 Give Medicine example (strongly live) . 167
6.6 State space for Give Medicine example (strongly live) 168
6.7 Data types and variables in PROMELA 169
6.8 Arrays and Type definitions in PROMELA 170
6.9 Control flow and proctype in PROMELA 171
6.10 Verification of DCR Graphs with SPIN - Overview 172
6.11 Variable declarations for DCR Graphs in PROMELA 174
6.12 DCR Graph specification in PROMELA 175
6.13 Give Medicine example . 176
6.14 PROMELA code for main process . 176
6.15 Computing enabled events in PROMELA code 177
6.16 Non deterministic execution in verification of deadlock free property . 178
6.17 Verification of deadlock free property in SPIN - Console output 179
6.18 Non deterministic execution for strongly deadlock free property 180
6.19 Verification of strongly deadlock free property in SPIN - Console output181
6.20 Error trail for violation of strongly deadlock free property in SPIN . . 182
6.21 Specification of global process for liveness properties 183
6.22 Computation of accepting marking . 184
6.23 SPIN never claim for [] <> ���������_�����_������� 184

List of Figures xv
6.24 Protoype Architecture . 186
6.25 Process Execution Service Contract . 187
6.26 Notification Service Contract . 187
6.27 Service Contract implemented by Process Repository 188
6.28 The Graphical Editor for DCR Graphs . 189
6.29 Execution of a DCR Graph in the Web Tool 190
6.30 Code generation options for Model checkers 190
6.31 Model Checking Tool for DCR Graphs . 191

7.1 Oncology treatment process with temporal constraints 200
7.2 Requisition Order in GSM model [Hull et al. 2011b] 204
7.3 A sample GSM model . 206
7.4 DCR Graph for sample GSM model . 206

Chapter 1Introduction
Organizations have always been working on improving their processes to optimize
their productivity, on one hand to face the global competition and on the other hand
to bring new ideas and concepts to add more value to their products and services.
In order to reduce expenses and to enhance their revenues, organizations constantly
look for better ways to improve their processes by automating some or whole of
repeatable activities so that they can be performed at a faster rate with little or no
variation. Process automation aims at streaming and standardizing the processes by
reducing the human error and enhancing the operational efficiency, thereby derive a
better value for products and services of a business.

A business process can be classified as a combination of a set of activities within
an organization, having a clear structure identifying their logical order and depen-
dencies to achieve a desired goal [Sara & Aguilar-Saven 2004]. The main aim of a
process model is to get a clear-cut and comprehensive understanding of a business
scenario or a goal. On the whole, the activities of a business process are performed
in coordination in an organizational context with the help of technical environment
to realize a business goal [Weske 2007].

With the help of modeling, often a very complicated business scenario can be
translated into a simplified model. We can reason about a simplified model much more
easily than what we can reason about the very complex scenario itself. In other words,
models help us to manage complexity and also to make decisions based on the well-
understood and explicitly formulated essentials of the modeled situation [Kilov 2002].
On the whole, good models helps us handle complicated problems in a clear and
explicit manner. In general business process models [Weske 2007] are the primary
artifacts for implementing the business processes and they contain a set activity
models and execution constraints prescribing the logical order between them.

According to Gartner [Hill et al. 2006], in a management perspective, Business
Process Management (BPM) is a management discipline that treats business pro-
cesses as assets to be valued, designed, and exploited in their own right. It is a
structured methodology to employ both management practices and software tools
continuously to model, manage and optimize the activities and processes that in-
teract with people and systems both within and across organizations. But a more
concrete definition of BPM from the scientific community point of view [van der Aalst
et al. 2003, Weske 2007] is that, the BPM is a methodology to support business pro-
cesses using methods, techniques and software to design, enact, control and analyze
operational processes involving humans, organizations, applications, documents and
other source of information. In the thesis, we will adhere to the later definition of the

2 Chapter 1. Introduction
BPM.

Before looking further into the business process technology, let us delve down
into it’s historical perspective to get a better understanding of how process-centric
thinking has evolved during the course of time to the state of art of current BPM
methodology.

1.1 Brief Historical Perspective of Business Processes

Even though the importance of business processes were first mentioned by a manage-
ment theorist, Levitt [Levitt 1960] as early as in 1960, but it was not until the1980s
that the process orientation acquired real importance in the design of organiza-
tions [Sara & Aguilar-Saven 2004]. However during the 1970s, there was a lot of
interest in Office automation initiative with a motivation to enhance productivity of
office workers by automating the office procedures. It also received the attention of
Computer Science [Zisman 1977, BURNS 1977, Ellis 1979, Ellis & Nutt 1980] with a
key research focus on design methodology, software tools, and system integration
techniques. Even though there was great optimism about the success of office au-
tomation, only quite few systems were successful. The systems developed in 1970s
were quite rigid, embedded with complex specifications of the organizations office
procedures which interfered with the work routines rather than expedite them and
further more, the networking facilities and application technology were not suffi-
ciently mature enough for the success of office automation [Ellis & Nutt 1996, van der
Aalst et al. 2003].

In 1980s, Michel Porter introduced the concept of value chain, which is the first
groundwork for the emphasis on the comprehensive understanding of a business pro-
cesses that spread across the functional or departmental boundaries [Harmon 2007].
In the end of 1980s, Rummler and Brache [Rummler & Brache 1990, Rummler &
Brache 1995, Harmon 2007], provided a detailed methodology on how to analyze an
organization with a process-centric view and how to redesign and improve processes.
They focused on organizations as systems and worked from top down to develop a
comprehensive picture of how organizations were defined by processes. In the same
period, Six Sigma Movement is one of the important contributions from the quality
control management perspectives. Even though Six Sigma Movement has evolved as
best practices from the quality control initiatives, but it failed to make a significant
influence on process-centric initiatives due to its origins in quality control and a
heavy emphasis on the statistical techniques [Harmon 2007].

Apart from those mention above, the most important and notable initiative is
Business Process Reengineering (BPR) movement which began in 1990s. The main
motivators for BPR initiative are Champy [Hammer & Champy 1993], Davenport [Dav-
enport 1993] and Hammer [Hammer 1990], who strongly argued that organizations
must think in terms of comprehensive processes, in the similar lines of Porter’s value
chains and Rummler’s organization level. The methodology proposed under BPR is
that, the processes should be conceptualized as complete entities and then, Infor-

1.2. Business Process Management and IT 3
mation Technology (IT) should be used to integrate these comprehensive processes.
Further BPR theorists had observed that IT applications could cut across departmen-
tal boundaries to eliminate inefficiencies and yield huge gains in coordination [Har-
mon 2007].

In the 1990s, along with BPR movement, there was again a huge interest in the
IT field to build systems to support business processes, which gave birth to new type
of software applications called business process management systems (BPMS) and
we will explore them in the next section.

1.2 Business Process Management and IT

In mid 1990s, most of the developments in business processes were driven by Informa-
tion Technology. We can observe two broad categories in the software applications
that emerged in the initiative of business process management and redesign. The first
category of systems is Enterprise resource planning (ERP) systems. These systems
are based on modules such as inventory, accounting and human resources and they
are suitable for the standardized processes that are most common between the or-
ganizations and they can be considered as integrated business process management
system [van der Aalst et al. 2003].

The second category of applications are Workflow Management Systems that
provide support for automating and execution of business processes. Workflow is
a concept closely related to Office automation from 1970s and the business pro-
cess reengineering that began in 1990s [Georgakopoulos et al. 1995, van der Aalst
et al. 2003, Russel & Ter Hofstede 2009] and according to Workflow Management
Coalition [WfMC 1999], workflow is defined as "The automation of a business process,
in whole or part, during which documents, information or tasks are passed from one
participant to another for action, according to a set of procedural rules".

Figure 1.1: The BPM lifecyle to compare Workflow Management and BPM [van der
Aalst et al. 2003]

The relationship between the workflow management systems and business pro-
cess management systems can be explained in a better manner by using the figure 1.1,
which shows four key phases of BPM life cycle [van der Aalst et al. 2003]. The first

4 Chapter 1. Introduction
phase is process design, where business processes are identified and are modeled
using various existing business process modeling techniques. In the configuration
phase, the modeled processes will be implemented using software applications or
using off the shelf BPM products. The third phase is the enactment phase where
the business processes are realized and the process instances are initiated to fulfill
the business goals. The last phase involves evaluation of process logs and other
information produced by the process instance during enactment phase to analyze
and improve the performance of a process. The focus of workflow management is
mostly on implementing the lower half of BPM life cycle, from process design to
process enactment, which does not generally include the diagnosis phase. On the
other hand, business process management also focusses on the analysis, flexibility
and other process improvement techniques.

One of the major paradigm shift during the evolution of applications in the IT
is moving from data orientation to process orientation [van der Aalst et al. 2003,
Aalst 2004]. During 1970s and 1980s the application development was dominated by
data driven approaches. In those times the focus of the applications was to store
and retrieve information and there by started adopting data modeling as a base for
building applications in IT. These applications often neglected the process centric ap-
proach in modeling the business processes. However Business process reengineering
movement evolved during 1990s strongly advocated for process centric approach and
thereby more emphasis on process centric approach which can be observed in the
later IT applications that were build for supporting business processes.

Another interesting paradigm for modeling business processes is the artifact-
centric approach [Kumaran et al. 2003, Nigam & Caswell 2003, Gerede et al. 2007,
Gerede & Su 2007, Bhattacharya et al. 2007b, Cohn & Hull 2009], which strongly
argues that data design should be elevated to the same level as control flows for
data rich workflows and business processes. Business artifacts combine the data
aspects and process aspects in a holistic manner and an artifact type contains both
an information model and lifecycle model, where information model manages the
data for business objects and lifecycle model describes the possible ways the tasks
on business objects can be invoked.

1.2.1 BPM Standardization Approaches

One of the key factors for failure of office automation in 1970s was the lack of unified
standards for design methodology and modeling systems. However considerable ef-
forts have been made in the last two decades for standardization in workflows and
business process management. The Workflow Management Coalition [Workflow Man-
agement Coalition 1993] was formed in 1993 by major product vendors from workflow
and BPM, with a goal of achieving interoperability and other process related stan-
dards among the product vendors. Now it has more than 300 member organizations,
workflow users, interested groups from academia and one of its notable contribution
is XML Process Definition Language (XPDL) [Workflow Management Coalition 2008],
for exchange business process definitions between different workflow vendors.

1.3. Why Formal Models? 5
A more later standardization effort in BPM community were focussed at devel-

oping standards for business process modeling and execution. The Web Services
Business Process Execution Language (WS-BPEL) [OASIS WSBPEL Technical Com-
mittee 2007] has evolved as a standard process oriented language for service compo-
sition in the context of Service oriented architecture (SOA) and web services. Even
though it has been widely adopted by different workflow product vendors, but lack
of formal semantics for WS-BPEL has led to different implementations by different
vendors and there by exchange of BPEL processes form one tool to other became
difficult. Furthermore, WS-BPEL does not have a graphical language which makes
it difficult to use it for modeling of business processes.

Further, Business Process Modeling Notation (BPMN) [Object Management Group
BPMN Technical Committee 2011] has been introduced as a modeling language for
business processes with graphical notation. The processes modeled in BPMN can
not be executed directly, but they can be translated to WS-BPEL for execution. In
the recent years, it has been widely adopted as a modeling language for business
processes, since there is no formalization for BPMN accepted by standards com-
mittee, different interpretations could be possible for some of its concepts [Hofstede
et al. 2010]. Even though the BPMN has become more mature and expressive in
the recent versions, but it still lacks clear semantics for some of its constructs, for
example ad-hoc sub processes.

In addition to the above, there also exists standards for other approaches to
model business processes such as activity diagrams of Unified Modeling Language
(UML) [OMG 2007] and Event driven Process Chains (EPCs) [Scheer 1998]. UML
activity diagrams are not meant to be executed directly and they don’t have any
formalization accepted by the OMG UML standing committee [Hofstede et al. 2010],
even though formal semantics for UML activity diagrams were defined in [Eshuis 2002].

1.3 Why Formal Models?

Formal methods is a technique to model complex systems as mathematical entities.
The use of formal methods is strongly advocated by many researchers [Bowen &
Stavridou 1993, M.Clarke et al. 1999, van der Aalst et al. 2003] as a way of increasing
confidence in building practical and complex systems, as the usage of formal models
leaves no scope for ambiguity.

In general business processes involve many stakeholder right from the domain
experts to process modeler with varied technical backgrounds. Hence usage graph-
ical languages to make the processes easily understood by different stakeholders
is a common practice in business process modeling. Furthermore, business process
models can be quite complex in nature, and hence there should not be any scope
for many interpretations of the same scenario. Lack of formal semantics for some of
the business process languages has resulted in different implementation by different
vendors. Therefore the usage of a formal language for specification of complex sce-
narios will eliminate the scope for ambiguity and will guarantee that there will not

6 Chapter 1. Introduction
be any chance for alternative interpretations.

Usage of formal models for specification of business processes has another ad-
vantage of using analysis techniques to analyze processes. Since business processes
can be complex, it is always advantageous to detect errors at the design stage itself,
instead of correcting them after deploying the processes. Moreover, formal models
can be used to guarantee certain properties (such as deadlock freeness etc) on busi-
ness processes, which can be used to analyze them. Now a days, model checking
and verification techniques have been developed to a large extent. Usage of formal
models for business processes can make use of these model checking and verifica-
tion techniques to reason about the properties on processes and to provide suitable
guidance to the process modeler at the design time.

1.4 Motivation for Declarative Models

There were quite large number of workflow and business processes management
systems developed in the past decade and they have been quite successful in provid-
ing support to users for the enactment of their processes. However their applicability
is still limited to specific sectors like insurance and banking. Current business pro-
cess technology is pretty good in supporting well-structured business processes with
well-defined set of tasks, showing little or variations in their possible execution se-
quences [Reichert & Dadam 1997, van der Aalst et al. 2003, van der Aalst et al. 2009].
Traditional business process systems aim at computing a specific algorithm, carrying
out an exact set of operations to achieve a fixed goal.

In contrast, the exact sequences of operations needed to fulfill a business process/-
workflow may not be always possible to foresee in highly complex and rapidly chang-
ing environments [Strong & Miller 1995, Reichert & Dadam 1997], such as healthcare
and case management domains. The processes in those domains exhibit a lot of
uncertainty, unexpected and ad-hoc behavior. In case management and healthcare
domains, the end users like case workers, doctors/nurses will have better knowledge
than the process modelers regarding how to deal with un-expected behavior. In case
of traditional business processes, any behavior that is not foreseen by the process
modelers can not be realized by the process instances at the time of enactment.
In those domains, traditional business processes technology did not make consid-
erable impact, as they exhibit too rigid behavior, on contrary healthcare and case
management domains require high degree of flexibility.

Declarative process models have been suggested by several research groups as
a good approach to handle such ad-hoc nature by describing control flow implicitly
and there by offering greater flexibility to the end uses. A key difference between
declarative and imperative process languages is that the control flow for the first
kind is defined implicitly as a set of constraints or rules, and for the latter is defined
explicitly, e.g. as a flow diagram or a sequence of state changing commands. There is
a long tradition for using declarative logic based languages to schedule transactions
in the database community, see e.g. [Fernandes et al. 1997]. Several researchers have

1.4. Motivation for Declarative Models 7
noted [Davulcu et al. 1998, Senkul et al. 2002, Singh et al. 1995, Bussler & Jablon-
ski 1994, van der Aalst et al. 2009, van der Aalst & Pesic 2006a, Pesic 2008] that it
could be an advantage to use a declarative approach to achieve more flexible process
descriptions in other areas, in particular for the specification of case management
workflow and ad hoc business processes. The increased flexibility is obtained in
two ways: Firstly, since it is often complex to explicitly model all possible ways
of fulfilling the requirements of a workflow, imperative descriptions easily lead to
over-constrained control flows. In the declarative approach any execution fulfilling
the constraints of the workflow is allowed, thereby leaving maximal flexibility in the
execution. Secondly, adding a new constraint to an imperative process description
often requires that the process code is completely rewritten, while the declarative
approach just requires the extra constraint to be added. In other words, declarative
models provide flexibility for the execution at run time and with respect to changes
to the process.

(a) Flow chart 1 (b) Flow chart 2 (c) Flow chart 3

Figure 1.2: Give medicine example in Flow chart

As a simple motivating example, consider a hospital workflow extracted from a
real-life study of paper-based oncology workflow at Danish hospitals [Lyng et al. 2008,
Mukkamala et al. 2008]. As a start, we assume two events, prescribe and sign, repre-
senting a doctor adding a prescription of medicine to the patient record and signing
it respectively. We assume the constraints stating that the doctor must sign after
having added a prescription of medicine to the patient record and not to sign an

8 Chapter 1. Introduction
empty record. A naive imperative process description may simply put the two actions
in sequence, prescribe;sign, which allows the doctor to first prescribe medicine and
then sign the record as shown in the figure 1.2-(a). In this way the possibilities of
adding several prescriptions before or after signing and signing multiple times are
lost, even if they are perfectly legal according to the constraints. The most general
imperative description should start with the prescribe event, followed by loops al-
lowing either sign or prescribe events and only allow termination after a sign event
as shown in the figure 1.2-(b). If the execution continues forever, it must be enforced
that every prescription is eventually followed by a sign event.

With respect to the second type of flexibility, consider adding a new event give,
representing a nurse giving the medicine to the patient, and the rule that a nurse
must give medicine to the patient if it is prescribed by the doctor, but not before it
has been signed. For the most general imperative description we should add the
ability to execute the give event within the loop after the first sign event and not
allow to terminate the flow if we have had a prescribe event without a subsequent
give event as shown in the flowchart 1.2-(c).

The main point of this example is, that we in many cases may want to allow
any execution that satisfy the given requirements, but not to constrain ourselves
to a specific way of fulfilling the requirements. In order to explain the differences
between imperative and declarative approaches, we will make use of the figure 1.3
from [van der Aalst & Pesic 2006a, Pesic 2008], where the behavior exhibited by the
procedural and declarative modeling languages is compared.

Figure 1.3: Declarative verses Imperative Approaches [van der Aalst & Pesic 2006a]

Imperative languages start specifying models from inside out style i.e specifying
the control flow explicitly to model the behavior that we want to have in the process.
The imperative models focus on specifying how the requirements should be fulfilled,

1.4. Motivation for Declarative Models 9
where as the declarative models focus on specifying what should be fulfilled [van der
Aalst & Pesic 2006a, van der Aalst et al. 2009], by offering all the possible behavior and
using constraints to eliminate the behavior we don’t want to happen in the process
as shown in the figure 1.3. In the imperative models one may tend to over specify
process as the control flow has to be specified explicitly, where as declarative models
tend to under specify as the control flow is implicitly specified, there by leaving more
options to the end users.

(a) Model (b) Mapped to labeled transition system

Figure 1.4: Give medicine example in DCR Graphs

The above mentioned hospital workflow is modeled using declarative modeling
approaches as shown in the figure 1.4-(a), where we have used our formal model
DCR Graphs to model the workflow. The model contains the same three events
prescribe medicine (pm), sign (s) and give medicine (gm), moreover events can be
executed any number of times in any order until unless they are constrained by the
relations. The condition relation from prescribe medicine to sign specifies that pre-
scribe medicine must have been done at least once before executing sign. Similarly
the response relation between prescribe medicine and give medicine specify that the
give medicine should be executed at least once after executing prescribe medicine,
but it does not stop from executing give medicine many times. The behavior offered
by the model can be seen in the figure 1.4-(b), where the execution semantics are
mapped to labeled transition system. Since events can be executed any number of
times in declarative models, there will not be any well defined explicit termination,

10 Chapter 1. Introduction
but on the other hand they have a notion of acceptance i.e when they are allowed to
stop. The green color states in the figure 1.4-(b) represent accepting states, where
all the constraints are satisfied.

One can easily observe that declarative models offer more choices to the end
users, by under-specification of the process. In case management and healthcare
domains, end users like case workers, doctors/nurses will have better knowledge
regarding how to deal with un-expected behavior than the process modelers. Hence,
we strongly argue that by using minimal specification in declarative models, you can
leave more flexibility to end users of the process.

1.5 Thesis Statement

Having discussed background and motivation of research problem, we will now dis-
cuss the research goal of the thesis in this section. This PhD dissertation is part of
the TrustCare project and therefore we will first describe the overall goals and key
hypothesis of TrustCare project, then we will proceed to define the research goal for
the thesis.

1.5.1 TrustCare Project

Trustworthy Pervasive Healthcare Services (TrustCare1) project is a strategic and
interdisciplinary research effort aimed at innovation of effective and trustworthy it-
support for pervasive healthcare services in collaboration with the industrial partner,
as well as innovation in research across areas in experimental and theoretical re-
search in computer science [Hildebrandt 2008]. The key research partners in Trust-
Care project are 1) I T University of Copenhagen 2) Department of Computer Science,
Copenhagen University 3) Resultmaker A/S, a Danish IT provider for workflow man-
agement systems, which has been quite successful in providing workflow solutions to
Danish public sector for the last 12 years, using their patented declarative workflow
management system Online Consultant.

The key hypothesis of the TrustCare project is that the patented workflow model
of the Resultmaker Online Consultant can be extended to provide both trustworthy
and useful it-support for interacting and dynamically changing healthcare services,
by formalizing and extending the underlying process model using techniques ob-
tained from theoretical research in domain-specific languages, process models, and
type-theory, and integrating this work with experimental research in state-of-the art
user-interfaces for pervasive healthcare services rooted in the activity based comput-
ing paradigm. The synergy between the development of the Online Consultant and
the research in experimental and theoretical computer science is described in the
figure 1.5.

1 The TrustCare (www.trustcare.eu) project is funded by Danish Strategic Research Council vide
grant # 2106-07-001

(www.trustcare.eu)

1.5. Thesis Statement 11

Figure 1.5: TrustCare project research methodology

The developers at Resultmaker and the experimental research in user-interfaces
for pervasive healthcare centered on activity based computing will cross-fertilize each
other by providing respectively domain knowledge on workflow management sys-
tems and clinical guidelines to the research on activity based computing and domain
knowledge on pervasive user- interfaces to the development of workflow management.
Likewise, the two groups will provide domain knowledge and the motivation for new
features such as dynamic re-configuration and awareness of changes to the group
researching in domain specific languages and formal models, which in return will
provide the foundations for trustworthy foundations of the On-line Consultant and
activity based computing paradigm supporting the proposed extensions. The three
groups will thus interact in cycles between the identification of challenges and the
need for new features in the product development and prototyping of user-interfaces
to development of domain-specific languages and models providing a trustworthy
foundation and back to integration of the models and the features into the product
and prototypes. Finally, the research in type theory and logical frameworks will be
fed by the research in domain-specific languages and models with domain-specific
challenges (motivated by the suggested product extensions) and return advanced
general solutions to the problem.

1.5.2 Research Goal

Since this PhD project is part of TrustCare project and its research goal is guided by
the overall goals and research methodologies of the TrustCare project. As explained

12 Chapter 1. Introduction
in the key hypothesis of the TrustCare project, one of the key challenges in the Trust-
Care project is to formalize the workflow model of Resultmaker Online Consultant,
as it has no formal semantics, but only has a commercial workflow management
implementation.

Aligned with the overall focus of the TrustCare project, we will now formulate the
goal of the thesis as follows,

The research goal is to show that it is possible to formalize core prim-
itives of Resultmaker declarative workflow model and further develop it
as a comprehensive formal model for specification and execution of work-
flows based on declarative modeling. The formal model should allow safe
distribution of workflows based on a model-driven approach and analysis
based on formal verification of processes using model checking.

In order to explain the concrete requirements of the research goal in a better
manner, we will further split the research goal into three research questions as
follows.

1. What are the formal semantical models suitable for describing flexible workflow
processes for healthcare and other dynamic services?
Our research goal as part of this question is to provide formal semantics to
the key primitives of the Resultmaker declarative workflow model and further
develop it as a comprehensive formal model that is suitable for specification and
execution flexible workflows with a key focus on healthcare, case management
and other dynamic sectors. We will use the Resultmaker workflow model as
a starting point for our goal of developing a comprehensive formal model on
declarative modeling primitives, since their workflow method has been proven
to be flexible and successful in the Danish public sector.
Furthermore, our focus is to provide formal semantics to their declarative work-
flow, but we are not concerned with how these formal semantics could be im-
plemented by their commercial workflow management system and how much
flexible will it be then compared to the other existing workflow management
systems, for example based on user evaluations. However, we intend to develop
a prototype workflow management based on the formal model developed in the
PhD thesis to prove that our formal model can be easily implemented by a
commercial workflow management system to offer flexible workflows based on
declarative modeling. Further, we will also model some use cases from health-
care and case management domains to show the practicality and adequacy of
our formal model.

2. How should one describe interfaces, contracts and interactions for declarative
workflows to allow safe distribution?
As part of this research question, we intent to study the distributed synthesis
problem: Given a global model and some formal description of how the model

1.6. Thesis Outline 13
should be distributed, can we synthesize a set of local processes with respect
to this distribution which are consistent to the global model? Here our focus
is to study about how to distribute a declarative workflow based on top-down
model-driven approach, as a global specification into a set of communicating
local processes such that the local processes still keep their declarative nature.
Furthermore, the goal of the distribution of the global specification should be
safe, in the sense that the behavior exhibited by the local processes should be
consistent with the behavior exhibited by the global process.

3. What are the suitable model checking and verification techniques for enhancing
trustworthiness in declarative workflows?
A drawback of the declarative approach is that the implicit definition of the
control flow makes the processes less easily perceived by the users. For ex-
ample if the users want to know what are the next possible events to execute,
one has to solve the set constraints to compute the next possible events.
We interpret the meaning of trustworthiness in the context of the declarative
business processes that the process will exhibit the behavior that the user has
modeled. Hence in order to enhance the trustworthiness in the declarative pro-
cesses, one could use formal verification techniques to analyse the processes
and guarantee that certain properties will hold. As part of this research ques-
tion, we would like to explore formal verification techniques that can be applied
to the declarative processes.

The research goal of the thesis will be achieved by solving the above research
questions. Furthermore, the ideas and concepts developed in the thesis are pre-
sented periodically in the workshops of Interest Group for Processes and IT [Hilde-
brandt 2010], which is a forum consisting of Danish IT vendors for workflow manage-
ment systems, public organizations and researchers. The next section gives a brief
overview of the thesis and how these questions have been addressed.

1.6 Thesis Outline

We will now provide a brief outline and structure of the remainder of this thesis.
First we will state the list of publications that are published as part of knowledge
dissemination in the PhD project, then we will give a brief overview of the rest of the
chapters by quoting which publications have been covered in the chapters.

1.6.1 List of Publications

The following papers have been peer reviewed and published at various conference
or prestigious workshops associated with conferences.

(1) Raghava Rao Mukkamala, Thomas T. Hildebrandt, and Janus Boris Tøth. The Re-
sultmaker Online Consultant: From Declarative Workflow Management in Prac-

14 Chapter 1. Introduction
tice to LTL. In Proceedings of First International Workshop on Dynamic and
Declarative Business Processes (DDBP 2008).

(2) Karen Marie Lyng, Thomas T. Hildebrandt, and Raghava Rao Mukkamala. From
Paper Based Clinical Practice Guidelines to Declarative Workflow Management.
In proceedings of 2nd Inter- national Workshop on Process-oriented information
systems in healthcare (ProHealth 2008).

(3) Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic condi-
tion response structures. In Proceedings of International Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES 10), Paphos, Cyprus, March 2010.

(4) Raghava Rao Mukkamala and Thomas Hildebrandt. From Dynamic Condition
Response Structures to Buchi Automata. In proceedings of 4th IEEE International
Symposium on Theoretical Aspects of Software Engineering (TASE 2010).

(5) Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declarative Event-Based
Workflow as Distributed Dynamic Condition Response Graphs. In Kohei Honda
and Alan Mycroft, editors, PLACES, volume 69 of EPTCS, pages 59Ð73, 2010.

(6) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Nested Dynamic
Condition Response Graphs. In Proceedings of Fundamentals of Software Engi-
neering (FSEN), April 2011.

(7) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Designing a
Cross-organizational Case Management System using Dynamic Condition Re-
sponse Graphs. In Proceedings of IEEE International EDOC Conference, 2011.

(8) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Safe Distribution
of Declarative Processes. In 9th International Conference on Software Engineer-
ing and Formal Methods (SEFM) 2011, 2011.

(9) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Declarative Mod-
elling and Safe Distribution of Healthcare Workflows. In International Symposium
on Foundations of Health Information Engineering and Systems, Johannesburg,
South Africa, August 2011.

(10) Søren Debois, Thomas Hildebrandt, Raghava Rao Mukkamala, Francesco Zanitti.
Towards a Programming Language for Declarative Event-based Context-sensitive
Reactive Services. Nordic Workshop on Programming Theory. Västerås, Sweden.
October, 2011.

(11) Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs Slaats. Declarative Mod-
elling and Safe Distribution of Healthcare Workflows. In LNCS Post proceedings
of International Symposium on Foundations of Health Information Engineering
and Systems, January, 2012.

1.6. Thesis Outline 15
1.6.2 Chapters Outline

In this section we will give a brief outline of the chapters of the thesis and also
mention which papers listed above contribute to the chapters.

• Chapter 2: Background
This chapter will introduce background and motivation for our formal model
developed in the thesis. First it will introduce our first attempt to formalize
Resultmaker’s declarative workflow model Process Matrix using Linear Tem-
poral Logic [Pnueli 1977]. Then we will introduce the case study conducted in
Danish hospitals regarding for lung cancer treatment, which will be used as
one of the running example for the rest of the thesis. This part of the chap-
ter covers the publications (1) and (2) mentioned above.Later we will give a
brief introduction to another declarative process model Declare [van der Aalst
et al. 2010a, van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a], from
which our formal derives some motivation. Finally, we will introduce base for-
malism behind our formal model, Event Structures [Winskel 1986] and explain
key primitives of labeled event structures.

• Chapter 3: Dynamic Condition Response Graphs
We will introduce our formal model Dynamic Condition Response Graphs(DCR Graphs)
in this chapter. First, we will describe how we have generalized Event Struc-
tures to define the semantics of DCR Graphs, then we will introduce the key
primitives and operational semantics of DCR Graphs. The execution semantics
for finite runs are mapped to labeled transition system and for infinite runs,
where as the semantics for infinite runs have been mapped to Büchi automata.
Graphical notation for modeling DCR Graphs along with the runtime notation
will also be introduced at the end of the chapter. This chapter covers the work
published in papers (3), (4) and (5) from the list mentioned in the previous
section.

• Chapter 4: Dynamic Condition Response Graphs - Extensions
Some important extensions to DCR Graphs developed in the thesis will be
introduced here. First we will extend DCR Graphs to allow for modeling of
nested sub-graphs, Nested Dynamic Condition Response Graphs. Further we
extend the Nested Dynamic Condition Response Graphs with multi-instance
subprocesses to model the replicated behavior in declarative processes. Finally
we add a basic support for data for DCR Graphs, by considering data as global
store of shared variables. This chapter covers the work published in the papers
(6) and (7).

• Chapter 5: Distribution of DCR Graphs
In this chapter we will introduce a technique safe distribution of DCR Graphs
as a set of communicating local graphs to represent local behavior. First we will

16 Chapter 1. Introduction
introduce and define the notion of projection and composition on DCR Graphs,
then define the notion networks of DCR Graphs. We will also prove that the
distribution is safe in the sense that the behavior exhibited by the local graphs
is consistent with the behavior exhibited by the global graph. Further we also
extend the distribution technique to the nested DCR Graphs and distribute
the healthcare example which was introduced in the previous chapters. This
chapter covers work published in the papers (8), (9) and (11).

• Chapter 6: Formal Verification, Tools and Implementation
In this chapter, we introduce the notion of safety and liveness properties on
DCR Graphs and further describe how to verify these properties using a model
checking tool. As part of formal verification, we will describe how to encode
DCR Graphs into PROMELA [Spin 2007] code and verify safety and liveness
properties using SPIN [Spin 2008] model checking tool. We will also describe
briefly our experience in using ZING [Microsoft-Research 2010] model checker
to verify safety properties on DCR Graphs. Finally, we will a brief description
of prototype tools for DCR Graphs implemented as part the thesis.

• Chapter 7: Conclusion and Future Work
This chapter will conclude the results achieved in the thesis and also provides
a detailed section explaining about the future work on DCR Graphs.

Chapter 2Background
This chapter provides a brief introduction to the formalisms and industrial process
models that served as motivation behind the development of our formal model Dy-
namic Condition Response Graphs (DCR Graphs). First of all, section 2.1 describes
about the process model employed by our research industrial partner Resultmaker
A/S, namely Resultmaker Online Consultant (ROC). Later in the section 2.2, we will
describe very briefly about the Declare framework [van der Aalst et al. 2010a] and
its declarative process languages (DecSerFlow [van der Aalst & Pesic 2006b], Con-
Dec [van der Aalst & Pesic 2006a]). Finally, we will give a introduction to Event
Structures [Winskel 1986] in the section 2.3 and explain why we have chosen Event
Structures to base our formalism DCR Graphs.

2.1 Resultmaker Online Consultant - A Declarative Workflow

In this section, we describe the process model employed in the Resultmaker Online
Consultant (ROC) workflow management system as an example of a declarative work-
flow language used in practice. The ROC workflow management system has evolved
from Resultmaker’s industrial experiences obtained during the process of authoring
solutions for the Danish public sector, and has been used successfully since several
years in Denmark and other European countries. It is based on a shared data ar-
chitecture and electronic forms (updating the shared data) as the key basic activity.
Hereto comes activities for connecting to external systems, invitation to participants
and digital signatures and other features. The process model employed in ROC is
called Process Matrix, which is a patented1 declarative process model developed by
Resultmaker.

The key primitives of Process Matrix will be introduced briefly in the later sections
and then we will further describe the how these key primitives are formalized using
Linear Temporal Logic (LTL) [Pnueli 1977] in line with the approach proposed by van
der Aalst and Pesic in DecSerFlow [van der Aalst & Pesic 2006b] and ConDec [van der
Aalst & Pesic 2006a]. This work is done as one of the very first steps of Trustwor-
thy Pervasive Healthcare Services (TrustCare2) [Hildebrandt 2008] research project.
TrustCare is a strategic and interdisciplinary research effort aimed at innovation of
effective and trustworthy it-support for pervasive healthcare services by combining
research in formal process models, logic, domain specific languages, and pervasive

1US Patent # 6,895,573
2This project is supported by the Danish Research Agency through grant #2106-07-0019.

18 Chapter 2. Background
user interfaces with the Resultmaker’s industrial experience on workflow manage-
ments, with cross-fertilization of experimental and theoretical research in computer
science. As part of the project, the primary goal is to develop formal foundations
of trustworthy and declarative flexible workflows with a key focus on the health
care sector. Further, the work on formalization of ROC [Mukkamala et al. 2008, Lyng
et al. 2008] has been published at workshops affiliated to BPM-2008 and EDOC-2008
conferences and received good feedback.

In the subsequent sections we will introduce the ROC workflow architecture and
it’s key components, in particular the declarative primitives of the ROC process model,
referred to as the Process Matrix and describe how we have formalized the key
primitives [Mukkamala et al. 2008]. Later, we will describe a field study of Oncology
workflow conducted in Danish hospitals [Lyng et al. 2008] and also demonstrate how
the oncology workflow can be modeled in ROC.

2.1.1 Resultmaker Online Consultant - Formalization

The key primitives of the ROC Process Matrix are sequential and logical predeces-
sor relations between activities, and along with activity conditions and dependency
expressions for each activity. Sequential predecessor imposes precedence among
activities. If an activity A is a sequential predecessor for the activity B, then it infor-
mally means that activity A must be executed before B can be executed. Note that
by default, any activity can be executed any number of times. On the other hand,
If A is declared as a logical predecessor of B, then it means that it is a sequential
predecessor with the additional constraint saying that B must be re-executed eventu-
ally after any re-execution of A. A prototypical example of logical predecessor could
be to have a logical predecessor between activities A and B, when A is an activity
representing filling out a loan/grant application and B is an activity of evaluating
or signing it . Activity conditions and dependency expressions refer to values of
variables in the shared data store and are dynamically evaluated after each step of
the workflow. An activity condition determines if an activity is currently included in
the workflow instance (i.e. it is active) and a change in a dependency expression
determines that an activity must be re-executed. Activity conditions facilitate reuse
of a single process description for different purposes with different variants: One
just adds a new Boolean variable to the shared data store and use it to toggle the
inclusion or exclusion of activities. Dependency expressions allow for a description
of logical dependency similar to the logical predecessor constraint, but are based on
changes in data rather than re-executions of activities and thus allow declaring a
more fine-grained dependency based on data values. In the example of filling out a
grant application, for example, one may use a dependency expression to declare that
the signature activity has to be re-executed if the data in the budget is changed, but
not if the name of the project is changed, even though both values are entered in the
grant application form.

ROC is a user-centric workflow management system based on a shared data
store and so-called eForms as its principal activities. An eForm is a web based

2.1. Resultmaker Online Consultant - A Declarative Workflow 19

Figure 2.1: The Online Consultant Architecture.

questionnaire presented to the users of the system by the front end Form engine.
The fields in the eForms are mapped to variables in the shared data store.

Fig. 2.1 shows the overall architecture of ROC. The Run-time services constitute
components that execute a ROC process instance, while the Design-time services
constitute e.g. tools for process description and design of eForms. ROC has its own
eForm designer tool, but also supports forms developed in Microsoft InfoPath.

2.1.1.1 Process Modeling Primitives

In this section, we describe the key process modeling primitives of ROC.

2.1.1.1.1 Activities
Primarily, ROC has four pre-defined activity types.

1. eForm Activity: It is the principal activity of ROC and the data filled in by the
users in the eForms will be available to all activities of the workflow instance
through the shared data store. eForms are appended to the activities and each
activity can contain only one eForm. At run-time when an eForm activity is
executed, the corresponding eForm will be displayed to the users for human
interaction. If any of the variables on which an eForm activity A depends on,
is changed by another activity, while the form is being displayed (and edited)
by the user, the activity A will be skipped when the form is attempt to submit
by the user and the user will be notified. In this way eForm activities are
guaranteed to run atomically and in isolation.

2. Invitation Activity: This type of activity attaches a role to an external user
(identified by an email address) and sends him an invitation link to the process
instance via email notification.

20 Chapter 2. Background
3. Signing Activity: In order to provide authentication for the data filled in by

the users, the ROC uses Signing Activity. The user data on eForms will be
digitally signed by using XML digital signatures syntax [D. Eastlake 2002] and
user’s digital certificates. A single signing activity supports signing of data
from multiple eForms.

4. External Activity: Via a general script engine it is possible to connect to any
external system, e.g. for automated tasks.

In our effort to formalize key primitives of ROC, we have only considered eForm
activities.

2.1.1.1.2 Control Flow Primitives
ROC contains the following control flow primitives which controls the execution of
process instances.

1. Activity Condition: Every activity in ROC has an attached activity condition,
which is a Boolean expression that reference variables from the shared data
store. Activities are included in the workflow instance for execution only if their
activity conditions evaluates to true, on the other hand they will be skipped
from the list of activities stacked for execution.
The boolean variables used in activity conditions are referred to as purposes.
The reason for this terminology is that, activity conditions makes it easy to
reuse a process description for a different purpose in a different variant: One
just adds a new purpose variable and use it in activity conditions to toggle
the inclusion of relevant and exclusion of irrelevant activities. Since activity
conditions refer to data values from shared data store, they will be evaluated
after execution of each activity, so the inclusion of an activity in the workflow
can be changed within in the lifetime of the workflow instance. As described
below, changing an activity from non-active to active may influence the state
of other activities that logically depend on the activity.

2. Sequential Predecessors: If an activity A is declared to be a sequential pre-
decessor of activity B, then in any process instance A must be executed before
B can be executed. However, the sequential predecessor has only effect if the
predecessor activity A is included in the workflow instance as per its activity
condition. That is, if the activity condition for A is false at certain point of time,
then activity B can be executed even if A is a sequential predecessor of B with
a status of non-executed. At a later point of time, if the activity A becomes part
of the workflow instance (because the activity condition for activity A changes
from false to true) after B got executed, it will not not have any effect on the
execution status of activity B.

3. Logical Predecessors: If an activity A is declared to be a logical predecessor
of activity B, then A is a sequential predecessor of B, but in addition, if activity

2.1. Resultmaker Online Consultant - A Declarative Workflow 21
A gets re-executed, reset, or becomes part of the workflow after activity B has
been executed and then if the activity B is active at that time, then activity B
is also reset, and thus must be re-executed at a later time (unless it stays in-
active for the rest of the instance lifetime, i.e its activity condition continuously
evaluates to false). Note that activity resets in this way can propagate through
a chain of (currently active) logical predecessors. As also mentioned in the
introduction the Process Matrix model includes an additional advanced feature
called dependency expressions.

A dependency expression is a set of expressions attached to an activity. Like
activity conditions, dependency expressions can also contain references to vari-
ables in the shared store. However, where an activity condition evaluates to
a Boolean value, a dependency expression can evaluate to any value, and any
change in the value of a dependency expression associated to an activity will
reset the activity status to non-executed.

2.1.1.1.3 Additional Primitives
In addition to activities and control flow constructs described above, the ROC also
have transactions and resources as explained below. But we have not considered
transactions in the work of ROC formalization.

a) Transactions: A ROC transaction groups a set of activities to be executed in trans-
action mode. The ROC transactions differ from standard transactional semantics
in the way that they are neither long running nor be rolled back. Instead, as
also found in web-service orchestration languages such as WS-BPEL, they can
have a compensating logic to be executed in case a transaction has to be aborted.
Transactions can be either signed or unsigned. Signed transactions involves sign-
ing the data using digital certificates by single/multiple parties containing many
eForms.

b) Resources/Roles: ROC has a simple resource model that uses Roles to define
allowed behaviour of different users within the system. Each Role is assigned an
access right for each activity of a workflow. The possible access rights are Read
(R), Write (W) and Denied (D). The Read access is the default access right that
allows a user with the particular role to see the data of an activity. Write access
right allows the user to execute an activity and also to input and submit data for
that activity. A Denied access right has the effect of making the activity invisible
to the user. As for transactions, we will leave the formalization of Roles for future
work.

Activities are executed by default at least once, but possibly many times in a
process instance. The ROC runtime state records whether an activity has been
executed or not. If an activity has state executed, its state can be reset to not
executed under certain circumstances described above.

22 Chapter 2. Background
Activities Roles Prede- Activity

App CW Mgr cessors Condition
1 Application W R R

2
Register
Customer
Info

W W W

3 Approval 1 D W R ∗
1,2

4 Approval 2 D R W ∗
1,2 ¬R���

5 Payment R W R ∗
3�

∗
4

¬H���� ∧
A�����

6 Express
Payment R W R ∗

3�
∗
4

H���� ∧
A�����

7 Rejection R W R ∗
3�

∗
4 ¬A�����

8 Archive D W R ∗
5�

∗
6�

∗
7

Table 2.1: Loan application Process Matrix

2.1.1.2 The Process Matrix

There is yet no formal graphical notation for ROC workflow processes. However, there
is a guideline for how to identify and specify activities, roles/actors and constraints in
a tabular format. This table is referred to as the Process Matrix, which is also used
as name for the process model. Practical experience has shown that the guideline
and the Process Matrix have been useful to extract process descriptions from domain
experts.

Below we describe a small fictive example of a loan application process repre-
sented by the Process Matrix shown in table. 2.1 . Each row of the matrix represents
an activity of the process: Filling in the application (Application), Registering cus-
tomer information(Register Customer Info), Approval of the application (Approval 1
and 2), Payment, Express Payment, Rejection and Archive. The columns are sepa-
rated in 3 parts: The first set of columns describes the access rights for the different
roles (Applicant (App), the Case Worker (CW) and Manager (Mgr) in the figure).
The Roles columns indicate that the applicant can fill out applications, but the case
worker and manager can only read the content of the application. Everyone can
register customer information, but only the case worker can perform approval 1 and
only the manager can perform approval 2, and both approval steps are invisible to
the applicant. The remaining actions can only be performed by the case worker -
they can be read by the manager and applicant, except for the archiving which is
invisible to the applicant.

The next column describes the predecessor constraints, where we indicate by
a ∗ that the predecessor is a logical predecessor. That is, activity Approval 1 has
activity Register Customer Info as sequential predecessor and activity application as

2.1. Resultmaker Online Consultant - A Declarative Workflow 23
logical predecessor. Thus, the customer may at any time re-submit the basic info (e.g.
address and phone number) without causing a re-execution of the approval activity.
However, it the application is changed the approval must also be carried out again.
(If only changes in the amount given in the Application activity should cause Approval
to be re-executed, one could make the application a sequential predecessor of the
Approval activities, but add the amount of the loan as a dependency expression to
the Approval activities). Finally, the last row describes the activity condition. For
instance, the condition H���� ∧ A����� of activity Express Payment indicates that
the Boolean values H���� and A����� in the shared data store must both be set to
true for this activity to be included in the flow. To fit the table within one column of
the paper we have left out a column stating which eForm is attached to an activity,
and which values in the shared data store are accessed and changed by the eForm:
The Application form changes the variables R��� and H����, and the Approval forms
toggle the A����� variable. Concretely, in the online example of the loan application
process the purposes Rich and Hurry are set by radio buttons in the eForm attached
to the Application activity in step 1, and the purpose Accept is toggled in the eForms
attached to Approval 1 and Approval 2.

The Activity Conditions in the last column depend on the purposes Rich, Hurry
and Accept. A rich applicant only needs an approval from the case worker, while a
poor applicant also needs an approval from the manager in the bank. If the purpose
Hurry is set to true, the application is treated as an express payment. The result is
that the Express payment activity (step 6) is included and not the Payment activity
(step 5). Conversely, if the purpose Hurry is set to false, the the (normal) Payment
activity in step 5 is included and not the express payment activity. Both payment
activities require the purpose Accept to be true.

2.1.1.3 Process Execution

In table. 2.2, we show a possible state of the system during an instance of the workflow
where a poor applicant applies for a non-express loan. The purpose Hurry is set to
false thus the activity Express Payment is excluded. The activity condition for all other
activities except activity Express Payment is set to true and they are included for
execution, i.e. the activity Approval 2 is included because the purpose Rich evaluates
false. The activities Application, Register Customer Info, Approval 2 have already
been executed and their activity status is thus executed. The activity Approval 1
is ready for execution, but it has not started executing. Note that the activities
Payment and Rejection can not be started because of their predecessors, but only
one of them will be executed in future as the value of purpose Accept makes the other
activity to be excluded. The activity Archive will be executed eventually after all its
predecessors, as it does not have any purposes attached to it. As mentioned above,
activity conditions will be re-evaluated after execution of each activity which makes
the dynamic inclusion or exclusion of activities possible at runtime.

Note that the registration of customer information can be done either before or
after the application, and can be redone arbitrarily often without affecting any of the

24 Chapter 2. Background
Activities Activity Activty

Condition Status
1 Application true executed
2 Register Customer Info true executed
3 Approval 1 true can start
4 Approval 2 true (¬R���) executed
5 Payment true can not start (wait for {3})
6 Express Payment false(¬H����) inactive (¬H����)

7 Rejection true can not start (wait for {3} ∧
¬A�����)

8 Archive true can not start (wait for ({3} ∧
{4}) ∨ ({3} ∧ {7}))

Table 2.2: The Process Matrix at Run Time.

other steps.

2.1.2 Formalization using Linear Temporal Logic

In this section we provide formalizations of the key primitives of the Online Consultant
(sec. 2.1.1.1) and process matrix described in (sec 2.1.1.2) in terms of Linear time
Temporal Logic (LTL) [Pnueli 1977, Sistla et al. 1983] formulas. First we briefly recall
LTL and the approach in [van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a].

2.1.2.1 Executable LTL for Workflow

LTL is a temporal logic extending propositional logic to infinite sequences of states.
This is done using the temporal modal operators OP (in the next state of the sequence
formula P holds), 2P (in the current and all of the following states of the sequence
formula P holds), 3P (in the current or at least one of the following states of the
sequence formula P holds), and Q U P (in the current or at least one of the following
states of the sequence formula P holds and formula Q holds in all states until that
state is reached).

LTL has been extensively used as property language [Dwyer et al. 1998] for au-
tomatic verification of reactive systems, also referred to as model checking [M.Clarke
et al. 1999]. The basic principle of model checking is to use an automatic tool to
check if a system, usually described by an automaton, satisfies a property specified
in a property language, which is often a temporal logic. In this case one can say that
the system is a model of the property.

The key idea of the paradigm shift proposed in [van der Aalst & Pesic 2006b] is
to turn this around and use the declarative, temporal logic language to provide the
system (workflow) definition. The system is then defined as a formula that charac-
terizes the valid completed sequences of activities, e.g. that in a completed instance

2.1. Resultmaker Online Consultant - A Declarative Workflow 25
execution a certain activity must always occur before some other activity.3 In ac-
knowledgement to the fact that LTL formulas may be too difficult to understand for
process designers, the authors in [van der Aalst & Pesic 2006b] propose to use so-
called constraint template formulas, also referred to as policies or business rules.
These templates are further equipped with a graphical notation.

It is worth noting, that a similar paradigm shift was in fact also proposed by
Gabbay in [Gabbay 1987] where he suggests to use LTL formulas as execution lan-
guage for interactive systems. Moreover, Gabbay showed that one could ease the
description of systems by using LTL extended with past time modalities by proving
that any LTL formula with past time modalities can be rewritten to an equivalent
(but in the worst case exponentially longer [Laroussinie et al. 2002]) LTL formula with
only future time modalities. We exploit the use of past time modalities below to give
more succinct formalizations of the activity resets in ROC.

It is important to recall, that the difference between using a declarative language
as opposed to an imperative language is on the ease and flexibility of expression
and not on expressiveness: Any LTL formula can be automatically translated to an
equivalent finite automaton over infinte sequences and vice versa [Sistla et al. 1983].
The point made in [van der Aalst & Pesic 2006b, Gabbay 1987] is that one may use
this correspondence to let the workflow engine construct an automaton from the
declarative LTL description that can be used for execution of the process.

As described in the previous section the Process Matrix employed in ROC is in
fact an example of a declarative workflow language used in practice. Our aim is to
give a translation from the Process Matrix model to LTL, which translates any Process
Matrix process M into an LTL formula [[M]] such that the sequences of states for which
[[M]] is true is exactly the sequences of states that constitute valid executions of the
process M . Concretely, our formalization is defined as extensions to the LTL template
formulas given in [van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a]. As in
[van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a] we assume a discrete time
model where any step between two consecutive states in the sequence corresponds
to the execution of one activity in the workflow, and we deal with the fact that
workflow executions are finite and LTL is interpreted over infinite sequences by
using the standard stutter extension, assuming that the finite workflow executions
are terminated by an infinite sequence of steps with no change in the state. The
basic propositional formulas we employ will be Boolean formulas over propositions
on the state space and the current activity. In particular, the proposition (act == A)
is true in a state if the last executed activity is A.

A basic example of an LTL template in the DecSerFlow language is the constraint
template ���������(A : ��������) formalized as 3(act == A) in LTL. It simply states
that there exists a step in which activity A is carried out.

An example of a so-called relation formula [van der Aalst & Pesic 2006b] is the
constraint ����������(A : ��������� B : ��������) which states that an activity B is

3Note that a partial execution sequence need not satisfy the formula, as long as it is possible to
complete the sequence in a way that makes the formula satisfied.

26 Chapter 2. Background
preceded by an activity A, i.e. the activity B can not be executed before activity A has
been executed. This template formula uses the existence template as a sub formula
and is expressed in LTL as

���������(B) =⇒ (!(act == B) U (act == A))

where ! denote the the Boolean negation. Reading the formula, it expresses that if
there exists a state in the sequence in which B is carried out then there exists a
state in the sequence in which A is carried out for which B is not carried out in any
of the preceding states. This is equivalent to the intended property that the activity
B can not be executed before activity A has been executed.

Another example of a relation formula is the constraint ��������(A : ��������� B :
��������) which expresses that whenever the activity A is executed then B must also
be executed after it. This formula is expressed in LTL as

2((act == A) =⇒ ���������(B))

From the response and precedence templates one may build composite relation
templates, such as the template ����������(A : ��������� B : ��������) expressed in
LTL simply as a conjunction of the two templates:

��������(A� B) ∧ ����������(A� B)

The formula expresses that every execution of activity A must be followed by an
execution of B and any execution of B must be preceded by an execution of A. One
may have already noticed similarities with the primitives in the Process Matrix. In
the following section we can see that the Process Matrix primitives can indeed be
formalized similarly to the templates given above, but with some interesting variations
due to the use of activity and dependency conditions. We do not consider the roles
nor dependency expressions.

2.1.2.2 From the Process Matrix to LTL

To define the translation from the Process Matrix model to LTL we describe how
the individual primitives can be expressed as templates in LTL. The formalization
of a Process Matrix workflow M will then be an LTL formula [[M]] which is a set
of formulas in conjunction obtained by instantiating the templates according to the
entries in the Process Matrix. Our aim is that [[M]] is true exactly for the sequences
of states that constitute valid executions of the process M . However, we leave for
future work to evaluate the correctness of the formalization.

In the following we assume a Process Matrix workflow M . We let A and B range
over activities in M and write ������(A) for the activity condition specified in the
Process Matrix M for an activity A.

The first formula used for the formalization is then the LTL formula ���_�������(A :
��������) given by

2(O(act == A) =⇒ ������(A))

2.1. Resultmaker Online Consultant - A Declarative Workflow 27
It expresses that an activity A can only be executed in the next step if it is included
in the present, i.e. its activity condition is true. The formula ���_�������(A) is then
included in the conjunction in [[M]] for every activity A in M .4

To formalize the remaining ingredients we define a few templates used as sub
formulas. The first such template is ���_���������(A� B) = (act == A) ∧ ������(B)
which expresses that activity A is executed and at the same time the activity B is
included in the process (because the acitivty condition for B is true).

The second template is ���������_���_���������(A� B) = 3���_���������(A� B)
which extends the existence template for DecSerFlow to express that an activity A
is eventually executed and at the same time the activity B is included in the process.

We now go on to formalize the control flow primitives of the Process Matrix.

2.1.2.2.1 Sequential Predecessor
The sequential predecessor constraint is similar to the precedence formula in DecSer-
Flow described above, except for the use of the activity condition in the Process Ma-
trix. We define the constraint template ����������_�����������(A : ��������� B :
��������) stating that A is a sequential predecessor of B by the LTL formula
���������_���_���������(B� A) =⇒ (!���_���������(B� A) U (act == A)). Let
A <M B denote that A is a sequential predecessor of B in M . We then include the
formula ����������_�����������(A� B) in the conjunction [[M]] for any pair A <M B.

2.1.2.2.2 Activity Reset
To formalize the logical predecessor constraint, we need to formalize the somewhat
complex handling of activity resets in ROC. We want to define a template �����(A)
which expresses that the activity A is being reset in the current state. Here we exploit
the past time modality Since written as Q S P and the past time modality YP. The
Since modality is the dual of the until modality and is true if in the current or at least
one of the preceeding states the formula P holds and formula Q holds in all states
since that state. The past time modality YP is true if P holds "Yesterday", i.e. in
the previous state. As described in [Gabbay 1987] we can translate the formalization
including past time modalities into a pure present and future time formula.

Let A
∗
<M B denote that A is a logical predecessor of B in M . If there is a chain

of logical predecessors A0
∗
<M A1

∗
<M � � � ���

∗
<M A� , for which ������(A�) is true

for � ∈ {0� � � � � �}, i.e. the activities A� are all included in this state, and the first
activity A0 is executed or changes from not-included in the previous state to included
in this state, then the activity A� will be reset in the Process Matrix. To formalize
this, first define the template ��������(A : ��������) = Y!������(A)∧������(A) and
define �����(A0� A) = {[A0� A1� � � � � A�] | A0

∗
<M A1

∗
<M � � � ���

∗
<M A� = A}, i.e the

set of all chains of logical predecessors with A0 as first and A as the last activity.
Then we define the template ����������(A) =

�
B∈M��∈�����(B�A)(

�
A�∈� ������(A�) ∧

(��������(B) ∨ (act == B)).
4We also include the formula

�
A∈M !(act == A) in the conjunction stating that no activities are

carried out before the initial state.

28 Chapter 2. Background
Finally, we define the template �����(A) =!(act == A) S ����������(A), which

we will use below.

2.1.2.2.3 Logical Predecessor
Logical Predecessor is a strengthening of the Sequential Predecessor constraint.
The template �����(A) allows us to formalize the template �������_�����������(A :
��������� B : ��������) in LTL as ����������_�����������(A� B) ∧ 2

�
�����(A) =⇒

����������_�����������(A : ��������� B : ��������)
�

We then include the formula
�������_�����������(A� B) in the conjunction [[M]] for any pair A

∗
<M B.

2.1.2.2.4 Activity Execution
The final part of the formalization, is to express when an activity should be executed.
We use the template ��������(A : ��������) =!�����(A) S (act == A), i.e. using
the template �����(A) and the since modality to describe that an activity has status
executed if there exist a state in the past where it is executed and it has not been
reset since. The activity execution formula can then finally be formalized as

(32��������(A)) ∨ (32!������(A))

which is included in the conjunction [[M]] for every activity A in M . The formula
expresses that either the activity A has status executed continuously in some future
state, or it is excluded from the process. (Recall that we interpret LTL over infinite
sequences and assume the execution sequences of ROC to be terminated by an
infinite sequence of states with no change)

2.1.2.3 Process Matrix

Based on the defintions of primitives explained in the previous paragraphs, we now
define the Process Matrix Workflow M and its equivalent LTL formula [[M]]. The
Process Matrix is 6-turple

M = (AM � <M⊆ AM × AM �
∗
<M⊆ AM × AM � V � FM : AM → P(V))

where

1. AM is the set of activities

2. <M⊆ AM × AM is the sequential predecessor relation

3.
∗
<M⊆ AM × AM is the logical predecessor relation

4. V is a finite set of variables

5. FM : AM → P(V) provides the set of variables the form may modify

The LTL formula for a Process Matrix M will then be

2.1. Resultmaker Online Consultant - A Declarative Workflow 29
[[M]] =

�
A∈AM

(���_�������(A)) ∧ ��������(A))
∧

�
A�B∈AM � A<MB ����������_�����������(A� B)

∧
�

A�B∈AM � A
∗
<MB �������_�����������(A� B)

∧ (��� == ����) ∧ O2(��� �= ����)
∧

�
A∈AM � V −FM (AM)� �∈V ��(2(act == A) =⇒ (Y (� = �) ⇔ (� = �)))

where

1.
�

A∈AM
(���_�������(A)) ∧ ��������(A)) represets set of included and executed

activities from workfow instance

2.
�

A�B∈AM � A<MB ����������_�����������(A� B) contains set of sequential pre-
decessor constriants

3.
�

A�B∈AM � A
∗
<MB �������_�����������(A� B) contains set of logical predecessors

constraints.

4. (��� == ����) represents the initial state of the workflow.

5.
�

A∈AM � V −����(AM)� �∈V ��(2(act == A) =⇒ (Y (� = �) ⇔ (� = �))) represents
state of all variables which are not part of the current activity and their state
remains the same during the execution of current activity.

This concludes our work on formalization of the Process Matrix. In the next
section, we will describe a case study from healthcare sector which was conducted
in Danish hospitals on the oncology treatment.

2.1.3 Case Study: Healthcare Workflow

It has been known for quite a while that there is a need for making clinical working
practices safer, as too many errors happen causing suffering or even death of patients
[Kohn et al. 2000]. Due to the complexity, the high mobility and ephemerality of the
daily clinical work [Bardram & Bossen 2005, Bødker & Christiansen 2004] safer
working practises will require better coordination, efficient collaboration and not
least fulfilment of up to date clinical practice guidelines (CPG) [Davis & Taylor-
Vaisey 1997, Grol & Grimshaw 2003].

One way of supporting this is by the use of of IT based clinical decision support
and better linkages in and among IT-systems [Bates et al. 2001]. Indeed, according to
[Mulyar et al. 2007, Lenz & Reichert 2007] on of the best options for improvement in
clinical work seems to be IT supported clinical processes based on CPGÕs. However,
the use of IT based CPGÕs is challenging in several ways. Firstly, due to continuous
development of new knowledge within the medical domain the mean survival time
of clinical guidelines is short, approximately 2 years [Shojania et al. 2007]. Sec-
ondly, there is a need for guidelines to be flexible and adaptable to the individual
patient [Quaglini et al. 2001].Thirdly, no coherent theoretical framework of health

30 Chapter 2. Background
professional and organiza-tional behaviour and behaviour change has yet been es-
tablished [Grimshaw et al. 2004]. Finally, it is a serious challenge that health
professionals currently tend not to follow clinical guidelines [Cabana et al. 1999].
One of the reasons for this could be that clinical guidelines are not embedded in the
clinical work processes and the technology available in the clinical setting today.
Oncology clinics are an example of a clinical speciality for which it is known that
there does exists a high number of CPGs that are followed to a certain degree by
the health professionals. For this reason we found it interesting to perform a series
of field studies in oncology clinics, to examine enablers and obstacles for use of IT-
supported clinical guidelines. The field studies are presented in Sec. 2.1.3.1 below.
Based on the field studies and our examination, we then proceeded to investigate
in Sec. 2.1.4.1 how the current paper based workflows could be supported using a
commercial declarative workflow management system, which relates to the CIGDec
approach of Pesic and van der Aalst [van der Aalst & Pesic 2006b]. We believe that
the resulting model rather naturally extends the paper based flowchart table used at
the hospitals, and in particular avoids the introduction of complex cyclic control flow
graphs and over specification as also pointed out in [van der Aalst & Pesic 2006b]

2.1.3.1 Field study - usage of CPGs in Danish oncology clinics

2.1.3.1.1 Method
Observations were made on three Danish oncology clinics by two observers. Four
days of observation were made at each clinic. Besides observations, access to all
clinical guidance material was granted. All the clinics were specialized within oncol-
ogy; two of them were university clinics. The focus of the observation study was on
the use of CPGs as defined by Field and Lohr [Field & Lohr 1992]: Clinical practice
guidelines are systematically developed statements to assist practitioner decisions
about appropriate health actions for specific clinical circumstance. We especially
looked at the work of nurses, doctors and pharmacists in relation to chemotherapeu-
tical treatment of patients.

2.1.3.1.2 Overall treatment processes and guidance documents
Patients are referred to the clinics with a diagnosis of cancer. By the first visit in the
outpatient clinic the patient is informed about pros and cons of chemotherapy by a
doctor, and an overall patient plan for oncological treatment is outlined. In subsequent
visits chemotherapy is given, in between visits to the outpatient clinic monitoring of
side effects to chemotherapy are done by laboratory tests. The chemotherapeutic
treatment is based on a number of different types of guidance documents and di-
agrams depicted in Figure 2.2. The basis of the treatment is given in a standard
treatment protocol or a research protocol, which constitute the CPG. The protocols
are written in a narrative form with a description of the current knowledge of treat-
ment of the disease in case as well as a thorough description of the drugs to be
used. The size of a research protocol is app. 60-80 pages and a standard treatment

2.1. Resultmaker Online Consultant - A Declarative Workflow 31
protocol is app. 30-40 pages. Protocols are generally developed in cooperation be-
tween several oncology departments, frequently with a pharmaceutical company as
a main sponsor and actor. Research protocols are often multinational. Based on the
protocols local practice guidelines (also referred to as standard treatment plans) are
made as well as a treatment overview, in daily speech referred to as the noughts and
crosses diagram. The noughts and crosses diagram describes the whole pathway
including medical treatment as well as examinations during several months. There
will often be deviations from the original plan due to side effects to treatment, other
medical problems or resource problems in the hospital.The flow of each chemother-
apeutic treatment session is guided by the so-called patient flowchart, which also
records the state of the treatment session. Below we will describe the workflow
resulting from the flowchart in more detail; this will be the focus of the remaining
part of the section.

Flow-
chart

Research or
Standard
Treatment
Protocol(CPG) -1 0 13 7 3 17 30

Activity

Activity

Activity

Activity

Activity

Activity

 O

 O

 O

 O

 O

 O

 O O O

 O

 O

 O

 O

Noughts
&
crosses

General

Guidelines
Local
Practice
Guideline

session

Dosage

session session session

D sign

P sign

N sign

Lab res.

N adm

Figure 2.2: Overview of the relation between research protocols/standard treatment
plans, local practice guidelines (standard plans) and flow charts. General guidelines
are use at the hospital, containing issues like the treatment of diabetes.

2.1.3.2 Current workflow for chemotherapy treatment sessions

Fig. 2.2 shows an overview of the workflow which is reiterated in every chemother-
apeutic treatment session. In the flowchart the basic information about the patient
is registered, including the latest lab results as well as height, weight of the pa-
tient. Based on this information and the patient history of any major adverse effects,
the doctor calculates the therapeutic doses of chemotherapy, documents it on the
flowchart and signs it. The flowchart is transferred from the doctor to the controlling
pharmacist (who can be situated near by in the clinic or far away in the pharmacy)
where it functions as a prescription from the doctor. The controlling pharmacist con-
trols the doctors dosage calculation and writes the information in a working slip that
is used for the pharmacy assistant who is doing the preparation of the drug(s) in

32 Chapter 2. Background
case. During preparation the quantity of all products as well as batch numbers are
registered in the working slip, finally the working slip is signed by the pharmacy as-
sistant, and the product - usually a drip bottle or a pump with a content and patient
information note stuck to it, is referred to the controlling pharmacist for check out.
When the controlling pharmacist has checked that the produced drug mixture and
patient information note matches the flowchart and the working slip, the pharmacist
put small green ticks on each item in the flowchart and finally signs it. Subsequently
the flowchart and the product is referred to the treatment rooms, where the respon-
sible nurse together with another authorized person (nurse or doctor) checks that
the product and flowchart matches, both regarding content and patient information.
The responsible nurse then signs the flowchart and the medicine is administered to
the patient. In parallel to this the nurse will administer adjuvant medicine like anti-
emetics, cortisol and other drugs that are prescribed in the local practice guidelines.
The nurse registers the medication in the Medicine Order and Administration (MOA)
IT system that currently is being implemented in all the oncology departments.

+

pharmacist

assistent

Ward

Pharmacy

flowchart

flowchart

Work

sheed

Patient

+

Doctor

+

pharmacist

Work

sheed

flowchart
+

Pharmacist

+

Nurse

flowchart

Pt. A

drug X

+

Pt. A

drug X

+

Pt. A

drug X

+

Patient

+

Nurse/

doctor

Figure 2.3: Oncologic workflow in relation to chemotherapeutic treatment of patient.

2.1.4 Preliminary conclusion to the case study

Several characteristics of the work were elucidated in the case study:

• There are several professional actors involved in even rather simple workflows
like the ones we studied (they are all involved in more than one workflow at
the same time).

• The flow is guided by the flowchart, which is simply a table with a column
to which the Doctor and Chemist add information and/or a signature, thereby
capturing the state of the session.

2.1. Resultmaker Online Consultant - A Declarative Workflow 33
• The workflow is distributed: the doctor and nurse, pharmacist, and pharmacy

assistant are physically located in different places at the hospital and the
current paper used for controlling the workflow is physically transferred by a
porter or nurse (or faxed) between the different actors.

• Only the actor currently possessing the flowchart knows its state. Much time
was used waiting for and controlling the status of the former process step, to
be able to plan own work.

• There are a number of check-points. If a check fails (e.g. the Chemist or Nurse
doubts the validity of the current state, the previous actors are asked to verify
the state and possibly redo a calculation.

• Exceptional events like the medicine getting too old (e.g. if it is not transferred
to the treatment rooms and approved within 24 hours) also led to recurrence
of activities.

• Only the state (information) and the actors are implicit in the flowchart. The
ordering of events (i.e. transfer of the flow chart between actors), handling of
exceptions and recurrence/validation of calculations are implicit.

In our observations we found several potential enablers and obstacles to digital-
ization of the process support, which have been collected in Fig. 2.4 below.

We believe that IT based process support has a potential in relation to chemother-
apeutic treatment of cancer patients. It is though important to be aware that such a
change in the clinical work is not just a question of giving access to the right applica-
tions. Access to the right equipment as well as integrations of it-systems is manda-
tory. Also the organisational workflows have to be analysed and maybe changed.
This demands managerial support. More work has to be done to understand the or-
ganisational and social implications. To obtain knowledge about organisational and
social implications it is important to establish carefully planned experiments with
process support in clinical settings. In this case study, we concentrate on how the
workflow of a single chemotherapeutic treatment session may be supported by a
workflow management system, and in particular how the workflow can be described
as an executable process. A central issue is how to make the implicit ordering of
events (and the additional verifications and possibly recurrences of events) explicit.
One option is to use an imperative flow graph based notation such as Petri Net or
BPMN. However, it would include arrows for capturing the control flow (including
cycles for the verification and recurrence of events), which would differ radically from
the notation used in the current case study based setting. As suggested by van der
Aalst and Pesic in [van der Aalst & Pesic 2006b] one can avoid introducing the explicit
control flow as a complex flow graph by instead using a declarative notation such
as the CIGDec model. Following this idea, we will investigate below how to specify
the treatment session in a commercial declarative workflow management system, the
Resultmaker Online Consultant.

34 Chapter 2. Background
Enablers Obstacles
The nurses do a lot of walking between treat-
ment rooms and pharmaceutical preparation
rooms to obtain status on the workflow. An
up to time status on preceeding process steps
would make it easier for the actors down
stream to plan work.

Feeling of competence. "I have
been here for a hundred years,
so I know what to do, and I know
the procedures" guidance are not
sought for.

Many patients had to follow more than one
CPG, due to co-morbidity or adverse effects
of treatment

Oral culture problems are prefer-
ably discussed with peers, even
rather fact based ones.

Meeting legal demands: In the current situa-
tion, the pharmacist is lacking a copy of the
prescription, which is a legal demand.

No clinical managerial pressure.
It is not expected than profession-
als look things up in the exist-
ing sources (Paper or IT-based).
There is no control (no count on
hits)

It was clear from our observations that CPGs
and standard treatment plans was more
vividly used if they were embedded in the
work processes. This could be in the form
of documentation templates, automated order
forms or decision algorithms.

Rigid work flows that has been
founded using low-tech informa-
tion technology like paper

Many new-commers, as they are more active
users of CPGs than those that had been in
the job for a longer period. So in departments
with a high turn around of employees process
support will be more sought for.

Lack of integration between pro-
cess support and all the clini-
cal information systems, among
which some are still not digi-
talised.

Experience among clinicians that guidelines
are hard to find especially IT based ones "I
get 35 hits in a search for resuscitation".

Lack of access to computers, with
low response time and single sign
on to (all) the clinical IT-systems

Figure 2.4: Enablers and obstacles for digitalized clinical process support.

2.1.4.1 Treatment Workflow in ROC

As explained in the previous section, the ROC uses so-called eForms as its princi-
pal activities and allows one to declare the sequential constraints and dynamically
included verification steps (and implied recurrences of activities) as found in the on-
cology treatment workflow using so-called sequential and logical predecessor con-
straints and a notion of activity conditions. There is yet no formal graphical notation
for the ROC processes, but there is a guideline for how to identify and specify activ-
ities, roles/actors and constraints in a table of a specific form jointly with the users.
This table is referred to as the Process Matrix (PM), which is also used as name for

2.1. Resultmaker Online Consultant - A Declarative Workflow 35
the process model.

Table 2.5 below shows an example of a PM (simplified to preserve space) for
the Oncology workflow presented in the previous section. Each row of the matrix
represents an activity of the Oncology workflow. The columns are separated in 3
parts: The first set of columns describes the access rights for the different roles:
Doctor (D), Nurse-I (N1), Nurse-II (N2), Controlling Pharmacist (CP), Pharmacist
assistant (PA). The next set of columns describes (sequential and logical) predecessor
constraints. The last set of columns describes activity conditions.

2.1.4.1.1 Activities and execution.
The notion of an activity in ROC is like in any other workflow language, which
means an activity is atomic and corresponds to a logical unit of work. Activities are
executed in parallel by default and they can be executed any number of times, unless
constrained as described below. The state of the ROC records whether an activity
has been executed or not. If an activity has been executed, then that activity will
have status executed. Its state can be reset under certain circumstances explained
in Control Flow Primitives sub section. We say that the flow has state complete at
any point where all activities (currently included in the flow) have state executed.

As we have discussed in the previous section, ROC contains pre-defined activity
type, eForm Activity. The eForms are web questionnaires that have graphical user
interface elements displayable in a web browser. The fields on the eForms are
mapped to variables in the shared data store and the data filled in by the users will be
available to all activities of the workflow instance. The eForms are appended to ROC
activities in process definitions and at run-time when an eForm activity is executed,
the corresponding eForm will be displayed to the user for human interaction. All
activities in the example, except signing activities, are eForm activities.

In order to provide authentication for the data filled in by the users, the ROC
uses Signing Activity. The user data on eForms will be digitally signed by using
XML digital signatures syntax and users digital identity certificates. A single signing
activity supports signing of data from multiple eForms. In the example all the activities
named Sign are signing activities.

The ROC supports a simple resource model using Role-based access rights to
define permissions on the activities to different users of the system. The possible
access rights are Read (R), Write (W), Denied (N) and the default access right on
activities is Read access. The Read access right allows a user with the particular
role to see the data of an activity, where as Write access right allows the user to
execute an activity and also to input and submit data for that activity. A Denied
access right is the same as making an activity invisible to the user, i.e. the user does
not see it as part of the flow. In the example we have used the denied access right
to shield the Pharmacist assistant from the rest of the workflow.

Every activity in the ROC has a logical activity condition. An activity condition is
a Boolean expression that can reference the variables from the shared data store. If
an activity condition is evaluated to be true, the activity is included in the workflow,

36 Chapter 2. Background

Figure 2.5: Information marked with * could be transferred from or registered au-
tomatically in another hospital information system (HIS) W= write, R = read, N =
denied access.

otherwise the activity will be skipped. Activity Conditions in ROC workflow model

2.1. Resultmaker Online Consultant - A Declarative Workflow 37
are re-evaluated whenever necessary, so the inclusion of an activity can be changed
during the lifetime of the workflow instance. If the activity condition changes to false
during the execution of an activity (e.g. when a user is filling in an eForm), the user
will be informed that the activity is no longer part of the flow and no data will be
changed. This guarantees atomicity of activities.

In the example we use two Boolean variables TrustO and TrustP to control the
inclusion of the verification actions 1.2.3 and 1.4.5 respectively. When the doctor
signs the ordination in activity 1.2.2 , TrustO is also set to false, thereby excluding
the verification from the flow. However, it may be set to true during activity 1.3.1,
1.51 or 1.5.2. This will force the verification step to be executed and all activities
having it as logical predecessor to be reset (see below).

Sequential predecessor constraints are marked in the Predecessor (Seq) column
in the example. For instance, Activity 1.2.2 (Sign) is a sequential predecessor of
activity 1.2.3 (Verify), capturing that it does not make sense to verify an ordination if
it has not been signed. Also, every activity in the group 1.1 is sequential predecessors
of every activity in group 1.2 In the example, the verification action 1.2.3 may reset
activity 1.2.1 (if the doctor finds out during verification that he needs to recalculate
the ordination). This again causes activity 1.2.2 to be reset, since it has activity 1.2.1
as a logical predecessor.

2.1.4.2 Discussion

It is well known that healthcare processes are complex [Drucker 1993] and although
much time is used on coordination [Reddy et al. 2001] errors happens too frequently
[Kohn et al. 2000]. The CPGs can support healthcare employees in the process of
following best practice consistently [Grol & Grimshaw 2003, Sim et al. 2001], but it
is also well known that impediments to access relevant guidelines is an obstacle for
use [Thorsen & Makela 1999, Feder et al. 1999]. Thus it seems obvious to embed
CPGs in clinical IT-process support, although the success of such projects has not
been convincing [Lenz & Reichert 2007, Ash et al. 2004].

In our case study of a rather simple clinical work process we found that the pro-
cess had an extension in both time and location and several actors were included.
Although the process was frequently repeated there were also frequent alterations
and recurrences due to returns to previous steps in the workflow. These challenges
could be supported in a natural way by the declarative primitives in the ROC work-
flow management system. Also, the activity conditions allow smooth combination
of several sub-workflows. This would be a way of implementing the noughts and
crosses diagram, which indeed specify for each day which sub workflows are rel-
evant. ROC supports the paradigm of embedded although visible CPGs in clinical
IT-systems. Though one have to be aware that IT based business support will lay
the grounds for new work processes, so one should not just automate existing paper
based work processes [Berg & Toussaint 2003].

38 Chapter 2. Background
2.1.4.2.1 Professions, professionalism and process support.
In the ROC independent roles can be defined for all actors. The rights to read, fill in,
and proceed to next step and to change the flow can defined in relation to each role
and activity. This can make it possible for the actors to see the status of the process
upstream, and thus make the planning of own work easier.

Health professionals are a heterogeneous group, some with little and some with
immense experience within a field. Although experience may not totally protect a
clinician from committing errors the risk is less and the source of annoyance from
detailed guidance by the IT system will be huge. In the ROC focus is on the overall
clinical managerial process, for the inexperienced there are links to CPGs outside
the ROC.

Nevertheless it will be a cultural challenge for clinicians to have a clinical process
system directing the road ahead [Berg et al. 2000], as well as it will have impact on
the training and socialization of new comers to the field [Mimnagh & Murphy. 2004].
The communication culture in the healthcare sector is profoundly oral [Coiera 2006].
We observed several examples of clinicians discussing factual topics to which the re-
ply only would be a few clicks away. The cultural element will always be a challenge
when implementing new technology, especially when it fundamentally changes the
work processes [Orlikowski & Gash 1994].

2.1.5 Conclusion

Initially, the work on formalization of ROC was done as part of PhD candidate’s 1st
year Industrial PhD project on behalf of Resultmaker A/S as a pre-project to the
current doctoral thesis work, with a key focus to formalize the primitives of ROC and
to develop it as a formal foundations for declarative flexible workflows and to use it
as a testbed for research in TrustCare project. But the industrial PhD project was
stopped by Resultmaker later due to their financial troubles.

Further, we had also explored using the ROC formalization work to further develop
it as a generic formal foundations for declarative flexible workflows, but we have
chosen to develop a new formal model instead of using ROC formalization due to the
following reasons.

1. ROC is a data-centric declarative workflow management system with a lot
of complex primitives such as dependency expressions, transactions. Further,
some of the primitives such as dependency expressions are tightly integrated
and built over data. But as part of TrustCare project, we had been looking
for a more general formal model that is declarative with simple primitives, yet
sufficiently expressive, which can be used for both specifications and execution
of workflows and business processes, which may not be not necessarily data-
centric.

2. The work on the formalization of ROC is based on using LTL as a language
for specification of business processes and during our work we had realized
that executing process models specified in temporal logics such as LTL is quite

2.1. Resultmaker Online Consultant - A Declarative Workflow 39
complex. Further, a master’s thesis in our group [Slaats 2009] has explored
the challenges of using temporal logics for business process execution, where
in it has looked into various ways of generating an automaton from an LTL
process specification that can be used for execution. It has explored the two
main approaches of generating an automaton from a LTL specification: creat-
ing a generalized Büchi automaton [Gerth et al. 1996] and creating a Müller
automaton [de Jong 1991] and further it has proposed it’s own algorithm based
on the rewriting of LTL formulae for the unsafe on-the-fly execution. However
it has noticed that for more flow-orientated process models, the LTL formulae
to describe them will grow very quickly in size and complexity and further
the automata generated for these complex LTL specifications is quite huge and
time consuming to generate and hence we came to a conclusion that it is not
practical to use LTL as modeling language for business processes.

However, we believe that the study of formalization of ROC is a starting point for
a valuable cross-fertilization between development of workflow management systems
in practice and research in theoretical computer science and motivated us for devel-
opment of our formal model DCR Graphs. The predecessor primitives of the Process
Matrix are similar to the primitives considered by van der Aalst and Pesic in [van der
Aalst & Pesic 2006a, van der Aalst & Pesic 2006b] , and quite useful constructs in
the domain of business process modeling and hence carried over to our formal model
DCR Graphs. Further in our opinion, the use of activity conditions suggests inter-
esting variants of the constraint templates and hence also partially motivated for
dynamic inclusion and exclusion relations in our DCR Graphs.

40 Chapter 2. Background
2.2 DECLARE: A Constraint Based Approach For Flexible Workflows

In this section we briefly introduce another important motivation for our formal model:
DECLARE [van der Aalst et al. 2010a, Pesic et al. 2007, van der Aalst et al. 2009]
and its declarative process languages [van der Aalst & Pesic 2006a, van der Aalst
& Pesic 2006b]. In this section, we very briefly introduce DECLARE framework and
key primitives of its declarative languages and further explain how it has served as
motivating factor for DCR Graphs.

The DECLARE is a system for supporting declarative or loosely-structured pro-
cess models. The DECLARE has been developed as a constraint-based framework
that uses declarative languages expressed in linear temporal logic [Pnueli 1977], for
specification and execution of business processes. Even though the DECLARE is a
framework for declarative processes, it offers most of the features similar to tradi-
tional workflow management systems such as process development tools, verification
support, simulation support for model execution, support for adaptive changes and
support for mining of already executed processes [Pesic et al. 2007]. As opposed to
imperative approaches to process modeling, the DECLARE uses declarative modeling
paradigm and the difference between the declarative and imperative approaches have
been discussed in sec 1.4 of the introduction chapter.

2.2.1 Process Modeling

The DECLARE uses constraints to specify relations between activities/tasks. Like
traditional modeling languages (for example BPMN), offering a predefined set of
relations between tasks or activities such as sequence, choice, parallelism, and loop,
the DECLARE allows for customized constraints templates for specification. The
Declare framework supports two very similar declarative languages: ConDec [van der
Aalst & Pesic 2006a] and DecSerFlow [van der Aalst & Pesic 2006b]. ConDec is a
declarative language for specification of business processes and workflows, where as
DecSerFlow is language tailored towards the specification of web services.

In the DECLARE it is possible to define new constraint templates using linear
temporal logic (LTL). Basically new templates can be defined using basic LTL opera-
tors: always (2), eventually (3), until (�), next (�). LTL constraints can be assigned
with name and graphical notation, so that users are not constrained to know LTL,
on the other hand they can use graphical languages to model the processes, without
knowing the underlying LTL formulae. The list of predefined constraints in LTL that
can be used in DECLARE can be found in [van der Aalst & Pesic 2006b], however, here
we will briefly mention about two constraints: precedence and response constraints,
which are also motivation for condition and response relations in our formal model.
The semantics of those two constraints are given in 2.1.2.1. In fact, we have used
the same graphical notation and semantics for the two relations in our formal model
DCR Graphs, which will be introduced in chapter 3.

The DECLARE framework supports both mandatory and optional constraints. The
tool enforces the mandatory constraints so that an execution can not violate the

2.2. DECLARE: A Constraint Based Approach For Flexible Workflows 41
mandatory constraints, where as in case of optional constraints, users are allowed
to violate them and in such a case the tool only warns about violation of an optional
constraint.

2.2.2 Process Execution

The specification of a process in DECLARE is mapped onto a set of LTL formulae,
primarily defining the constraints between the activities. From the specification in
LTL, an automata is generated using standard techniques [Gerth et al. 1996] to gen-
erate automata from an LTL formulae. Many algorithms have been developed in the
last decades about generating the an automata from LTL specification and DECLARE
uses an algorithm that creates finite words automata [M.Clarke et al. 1999] from
LTL formulas of specification. Once the automata is generated, it is used to support
enactment and monitor state of each constraint.

Adopting the runtime instances of process is an important feature of flexible work-
flow management systems and the DECLARE supports changing the process models
during their execution. In DECLARE, it is possible to add, delete activities together
with relating constraints and also possible to change the data associated with ac-
tivities and constraints can be added or deleted and can be made optional during
execution of process instances [Pesic et al. 2007].

When a model is adopted, it verifies the compliance of these changes and the
users will be notified if there are any conflicts with the already executed part of the
instance. After the adaptation of the running instances, the modified process model
is re-initialized and a new automata will be generated from the modified process
instances based on the new set of constraints and finally the already executed part
of the instance is replayed on the new automata, to get the updated state.

2.2.3 Conclusion

The DECLARE and its declarative languages ConDec [van der Aalst & Pesic 2006a]
and DecSerFlow [van der Aalst & Pesic 2006b] are one of the first few workflow
formalisms that made significant impact on the research of finding new ways of
modeling for achieving flexibility. Our approach is closely related to the work on
ConDec [van der Aalst & Pesic 2006a] and DecSerFlow [van der Aalst & Pesic 2006b].
The crucial difference is that we allow nesting and a few core constraints making it
possible to describe the state of a process as a simple marking. ConDec does not
address dynamic inclusion/exclusion of activities, but on the other hand allows one to
specify any relation expressible within Linear-time Temporal Logic (LTL). This offers
much flexibility with respect to specifying execution constraints. In particular the
condition and response relations in our formal model are same as precedence and
response constraints and hence we have used same graphical notation.

However their approach suffers from problems related to efficiency in executing
business processes [van der Aalst et al. 2009]. The DECLARE engine has problems in
dealing with large workflow specifications because of the complexity of generating

42 Chapter 2. Background
automata from the LTL specification.

In the recent years, there has been significant work in DECLARE framework on
improving the efficiency of translation from LTL to automata. Especially in the latest
work [Westergaard 2011], significant performance has been achieved by exploiting
characteristics of LTL formulae originating from a DECLARE specification as they are
conjunction of simpler formulae defined by the individual constraints. The approach
used by Westergaard in [Westergaard 2011], is by computing automaton product
for the individual formulae instead of computing the automaton for the whole LTL
specification which is a conjunction of all the formulae. No doubt, the DECLARE has
also served as a big motivation for using declarative modeling primitives for our formal
model. However as mentioned in the summary 2.1.5 of last section, we have decided
to not to use LTL for specification of modeling language for business processes.

2.3. Event Structures 43
2.3 Event Structures

In this section, we briefly introduce the Event Structures [Nielsen et al. 1979, Winskel 1986,
Winskel 2011, Winskel & Nielsen 1993, Winskel & Nielsen 1995], which serves as the
base theory behind our formal model DCR Graphs. First we give a brief introduc-
tion to the theory behind event structures and later we introduce some of the basic
definitions of event structure with an example and finally we provide concluding re-
marks stating the reasons for choosing the event structures as the base theory for
DCR Graphs.

2.3.1 Introduction

Event Structures can be regarded as a minimal, declarative model for concurrent
processes. In a more general setting, event structures can be thought as a model of
computational processes and a process can be represented using event structures as
a set of event occurrences with an explicit relation to express how events casually
depend on others [Winskel 1986]. More precisely, in event structures what is impor-
tant is the significance of events and how the occurrence of an event depend on the
previous occurrence of some other events. To model nondeterminism, event structures
have binary conflict relation between the events, expressing how occurrences of some
events will rule out the possibility of happening of others events.

The primary motivation for event structures was to develop a theory of concur-
rency that incorporates insights from both Petrinets [Petri 1980, Petri 1977] and Scott
domain of information [Scott 1970, Scott 1976, Scott 1982], by connecting the idea of
events with partial orders of information [Nielsen et al. 1979]. The relations on events
in the event structures bear a close relationship to the Petrinets, where as the con-
figurations and states of an event structure represents the information about what
events have occurred and hence determine a Scott domain of information. Due to this
dual nature, Event structures stand as intermediary between the theories of Petri nets
and denotational semantics and by sharing the ideas from both formalisms, they serve
as bridge between the two theories [Winskel 1986].

2.3.2 Event Structures, Configurations

In this section, we will introduce some of the basic definitions of event structures,
based on the formal definitions from [Winskel & Nielsen 1993].

Definition 2.3.1. A prime event structure is a 3-tuple ES = (E� ≤� #) where

(i) E is a (possibly infinite) set of events

(ii) ≤ ⊆ E × E is the causality relation between events which is a partial order

(iii) # ⊆ E × E is a binary conflict relation between events which is irreflexive and
symmetric

An events structure (ES) must satisfy the conditions that

44 Chapter 2. Background
1. causality relation satisfies principle of finite causes

∀� ↓= {�� | �� < �} is finite for any � ∈ E.

2. conflict relation satisfies the principle of conflict heredity
∀�� ��� ��� ∈ E��#�� ≤ ��� =⇒ �#���

The condition (1) states that the set of events which are causally depend on an
event is finite, where as the axiom on conflict relation (2) expresses that if an event is
causally depends on another event, which is in turn conflict with a third event, then
even the first event will also be in conflict with the third event. We now define the
causal independence (concurrency) of events in an event structure as follows,

Definition 2.3.2. For an event structure ES = (E� ≤� #) the causal independence
of events is expressed by a derived relation �� ⊆ E × E, such that � �� �� iff
¬(� ≤ �� ∨ �� ≤ � ∨ �#��).

Further, the behavior of an event structure can be described by stating which
subsets of events can happen in a possible run of an system representing the event
structure and these subsets of events are called configurations. Now we formally
define a configuration of an event structure as follows.

Definition 2.3.3. For an event structure ES = (E� ≤� #), a configuration is a set of
events � ⊆ E satisfying the conditions

(i) conflict-free: ∀�� �� ∈ ��¬(�#��)

(ii) downwards-closed: ∀� ∈ �� �� ∈ E��� ≤ � =⇒ �� ∈ �

We further define configurations � (ES) as a set of all configuration � and denote
� 0(ES) for a set of finite configurations.

The conflict relation between the events implies that both events can not happen
in the same configuration (i), in other words occurrence of one event will exclude the
occurrence of the other, where as (ii) condition says that if an event happened, then
all the events that casually depend on it must have happened before.

We can infer important relations associated with an event structure from its finite
configurations as follows,

Proposition 2.3.1. For an event structure ES = (E� ≤� #) with a set of finite config-
urations � 0(ES),

(i) � ≤ �� ⇔ ∀� ∈ � 0(ES)� �� ∈ � =⇒ � ∈ �

(ii) �#�� ⇔ ∀� ∈ � 0(ES)� � ∈ � =⇒ �� �∈ �

(iii) � �� �� ⇔ ∃�� �� ∈ � 0(ES)� (� ∈ �) ∧ (� �∈ ��) ∧ (�� ∈ ��) ∧ (�� �∈ �) ∧ (� ∪ ��) ∈
� 0(ES)

2.3. Event Structures 45
Definition 2.3.4. For an event structure ES = (E� ≤� #), let �, �’ be the configurations,
then we can write that

� �−→ �� ⇔ � �∈ � ∧ �� = � ∪ {�}

In an event structure, events can only happen at most once (def 2.3.4) and fur-
ther they can be perceived as atomic jumps from one configuration to another, like
transitions in asynchronous transition systems [Winskel & Nielsen 1993].Example 2.3.1. Event structures can exhibit nondeterminism. For example consider
an event structure with two events �0 and �1 with a conflict relation between them
(�0#�1) as shown in the figure 2.6, in which {�0}� {�1} ∈ � 0(ES), but {�0� �1} �∈
� 0(ES).

Figure 2.6: Nondeterministic behavior in events structures

Example 2.3.2. Event structures can exhibit parallelism or concurrency. For example
consider an event structure with two events �0 and �1 as shown in the figure 2.7, in
which we have configurations ∅� {�0}� {�1}� {�0� �1} ∈ � 0(ES).

Figure 2.7: Concurrency in events structures

Proposition 2.3.2. Two events �0, �1 of an event structure are in concurrency relation
��, iff there exists configurations ∅� {�0}� {�1}� {�0� �1} ∈ � 0(ES) as shown in the
figuree 2.7 and we will write that as �0 �� �1.

46 Chapter 2. Background
Often processes needs to perform action multiple times, but events in the event

structures can happen only once. In order to model such processes, it would be
helpful to add labels to event structures so that each occurrence of an action can be
modeled by different event. We do this by extending the definition of event structures
with set of labels and a leveling function to define labeled event structures as follows,

Definition 2.3.5. A labeled event structure is a tuple LES = (ES� Act� �) where

(i) ES = (E� ≤� #) is an event structre,

(ii) Act is the set of actions

(iii) � : E → Act is the labeling function mapping events to actions

A run ρ of LES is a (possibly infinite) sequence of labelled events (�0� �(�0))� (�1� �(�1))� � � �
such that for all � ≥ 0� ∪0≤�≤� {��} is a configuration.

A run (�0� �(�0))� (�1� �(�1))� � � � is maximal if any enabled event eventually happen
or become in conflict, formally ∀� ∈ E� � ≥ 0�� ↓⊆ (�� ↓ ∪{��}) =⇒ ∃� ≥ 0�(�#�� ∨
� = ��).

Let us take a small example to illustrate how labeled event structures can used
to model a process that performs actions multiple times.

Example 2.3.3. Consider a process which exhibit a behavior (�; �; �;)+ (� | �), where
we can execute either actions a, b, c sequentially or actions a and b independently.

Figure 2.8: Process in labeled events structures

We can model the process in labeled event structures as,
E = {�1� �2� �3� �4� �5} , Act = {�� �� �}, � = {(�1� �)� (�2� �)� (�3� �)� (�4� �)� (�5� �)},
≤= {(�1� �2)� (�2� �3)}, # = {(�1� �4)� (�1� �5)} and �� = {(�4� �5)}.

2.3. Event Structures 47
The same process can be shown graphically in 2.8, where we have used arrows or
directed arcs to represent causality and hash mark (#) to represent conflict. The set
of all configurations will be
� 0(LES) = {∅� {(�1� �)}� {(�1� �)� (�2� �)}� {(�1� �)� (�2� �)� (�3� �)}�
{(�4� �)}� {(�5� �)}� {(�4� �)� (�5� �)}}

We further model the give medicine healthcare example, which was introduced in
sec 1.4 from the case study 2.1.3, in labeled event structures in 2.3.4.

Example 2.3.4. In this example we consider that the set of events and actions is the
same and hence we omit display of action labels in the figure 2.9.

Figure 2.9: Give medicine example in events structures

E = Act = {prescribe medicine, sign, don’t trust, give medicine} ,
l = {(prescribe medicine, prescribe medicine), . . .},
≤ = {(prescribe medicine, sign), (sign, don’t trust), (sign, give medicine) },
= {(don’t trust, give medicine) } ,
� 0(LES) = {∅, {prescribe medicine}, {prescribe medicine, sign}, {prescribe medicine,
sign, don’t trust}, {prescribe medicine, sign, give medicine} }

2.3.3 Conclusion

In this section, we will explain the reasons why we have chosen event structure as
base theory behind our formal model DCR Graphs and also talk about short-comings
of event structures to use them for specifications and execution of declarative business
processes and workflows.

Event structures are suitable for process modeling of declaratives workflows be-
cause of the following reasons.

1) Event structures has a strong formal foundation, and it has been developed as
a concurrency theory bridging the gap between traditional domain theory and

48 Chapter 2. Background
net based process languages such as Petrinets, by incorporating good insights
from both the theories. Further, event structures have been studied by many
researchers and used to give semantics for nondeterministic dataflow [Saunders-
Evans & Winskel 2007], higher order process languages, CCS and related lan-
guages [Winskel 1982, Crafa et al. 2007] and a logical framework for reputation
systems [Krukow et al. 2008].

2) Event structures has causality relation to express partial order among events,
which is a more declarative way of specifying the precedence among the events.
It also has conflict relation to model nondeterministic behavior among the events
in an indigenous way. Moreover events which are not related by causality and
conflict are concurrent [prop 2.3.1], so the concurrency has been naturally built
into the model. All these characteristics make the event structures as a natural
and more suitable choice to use them as formal model for declarative processes.

However, we have noticed that there are certain missing aspects in event structures, in
order to able to use them as an formal model for specification execution of workflows.

1) First of all, events in the event structures can only happen once and we feel that it
is a limitation to express repeated, possibly infinite behavior. To be more precise,
in the example 2.3.4 it should have be possible to execute give medicine many times
repeatedly, may be after don’t trust followed by sign, but not possible because the
events can only be executed once. One may argues that the repeated behavior in
event structures could be modeled using labels as shown in the example 2.3.3, but
this approach on one hand makes the modeling part complicated and on the other
hand it will not be possible to model infinite behavior, for example if we don’t
know how many times an action should be repeated. So we feel that, lacking
of repeated behavior of events, is an important limitation in order to use event
structures for modeling of declarative processes.

2) Secondly, it must be possible to specify that only some of the partial (or infinite)
computations are acceptable. But event structures has no notion of categorizing
some of the configurations/runs as accepting or desirable, which is an important
characteristic to model the declarative process models. Moreover, sometimes it is
necessary to specify that some of the events are mandatory in a process model,
but event structures does not have any such constructs.

3) Finally, we need to be able to describe a distribution of events over the agents
/persons/processors. But event structures does not have such notion.

In the next chapter [section 3.1.1], we will describe how we have addressed these
limitations by proposing generalizations to the event structures, to develop the formal
model for declarative workflows.

2.4. Summary 49
2.4 Summary

In this chapter, we have introduced formalisms and process models that have served
as motivation for our formal model DCR Graphs. First we have described our previous
work on formalization of Resultmaker process model using linear temporal logics in
sec 2.1.2 and then we have introduced a healthcare case study in sec 2.1.3. We have
explained the drawbacks of our previous approach using LTL for formalization of Re-
sultmaker process model in 2.1.5 and then very briefly introduced DECLARE [van der
Aalst et al. 2010a, van der Aalst & Pesic 2006b, van der Aalst & Pesic 2006a] tool and
its approach in using declarative modeling languages in 2.2.

In the last section 2.3, we have introduced Event structures [Winskel 1986], which
is the base theory behind our formal model. We have also explained reasons for
choosing Event structures and at the same also pointed out the missing aspects of
event structures in order to use them as a formal model for business processes in
the concluding section 2.3.3. In the next chapter 3, we will explain how we have
generalized event structures to define our formal model and also introduce formal
semantics of DCR Graphs.

Chapter 3Dynamic Condition ResponseGraphs
In the previous chapter, we have examined the formal models which have served as
motivation for our formal model Dynamic Condition Response Graphs (DCR Graphs).
This chapter will introduce the formal semantics of DCR Graphs. First we will give a
brief motivation for DCR Graphs in sec 3.1 and then we will discuss about a sequence
of proposed generalizations to labelled event structures in sec 3.1.1. A brief discussion
relating our model to other formalisms will be presented in the section 3.2. We will
introduce condition response event structures as the first generalization in sec 3.3.1
and then show how the response relation allows us to represent the notion of weak
fairness. In sec. 3.3.2 we will introduce the model of DCR Graphs and by extending
the model with role and principals we define distributed DCR Graphs in sec 3.3.3 and
the execution semantics to are mapped to a labelled transition system. Furthermore,
we will further formalize the execution semantics of DCR Graphs for infinite runs by
providing a mapping to Büchi-automaton with τ-events in the sec 3.3.4. Then, we
will introduce graphical notation and give an healthcare example for DCR Graphs in
sec 3.4. Finally, as part of expressibility of DCR Graphs, we encode Büchi-automaton
into the DCR Graphs and show that the DCR Graphs are expressive enough to model
ω-languages. We will end the chapter by concluding remarks in sec 3.6.

This chapter extends and summarizes the work presented in the two previous
short papers [Hildebrandt & Mukkamala 2011, Mukkamala & Hildebrandt 2010] and a
journal version [Hildebrandt & Mukkamala 2010]. The paper [Hildebrandt & Mukka-
mala 2011] introduced condition response event structures and dynamic condition re-
sponse structures and provided a mapping to finite state machines (ignoring infinite
runs), which are essentially DCR Graphs without markings. The paper [Mukkamala
& Hildebrandt 2010] provided a mapping from dynamic condition response structures
to Büchi automata, but only capturing acceptance for the infinite runs. In [Hilde-
brandt & Mukkamala 2010], the DCR Graphs graphs were introduced and this paper
also characterizes the acceptance of finite runs in the Büchi automata by introducing
silent (τ) transitions.

3.1 Motivation

There is a long tradition for using declarative logic based languages to schedule
transactions in the database community, see e.g. [Fernandes et al. 1997]. Several
researchers have noted [Davulcu et al. 1998, Senkul et al. 2002, Singh et al. 1995,

52 Chapter 3. Dynamic Condition Response Graphs
Bussler & Jablonski 1994, van der Aalst et al. 2009] that it could be an advantage
to use a declarative approach to achieve more flexible process descriptions in other
areas, in particular for the specification of case management workflow and ad hoc
business processes. The increased flexibility is obtained in two ways: Firstly, since
it is often complex to explicitly model all possible ways of fulfilling the requirements
of a workflow, imperative descriptions easily lead to over-constrained control flows.
In the declarative approach any execution fulfilling the constraints of the workflow
is allowed, thereby leaving maximal flexibility in the execution. Secondly, adding a
new constraint to an imperative process description often requires that the process
code is completely rewritten, while the declarative approach just requires the extra
constraint to be added. In other words, declarative models provide flexibility for the
execution at run time and with respect to changes to the process.

As a simple motivating example, we will again consider the hospital workflow
from Danish hospitals [Lyng et al. 2008, Mukkamala et al. 2008], which has also been
used in the previous chapters. As a start, we assume two events, prescribe and
sign, representing a doctor adding a medical prescription to the patient’s record and
signing it respectively. We assume the constraints stating that the doctor must sign
after having added a prescription of medicine to the patient record and not to sign an
empty record. A naive imperative process description may simply put the two actions
in sequence, prescribe;sign, which allows the doctor first to prescribe medicine and
then sign the record. In this way, the possibilities of adding several prescriptions
before or after signing and signing multiple times are lost, even if they are perfectly
legal according to the constraints. The most general imperative description should
start with the prescribe event, followed by a loop allowing either sign or prescribe
events and only allow termination after a sign event. If the execution continues
forever, it must be enforced that every prescription is eventually followed by a sign
event.

With respect to the second type of flexibility, consider adding a new event give,
representing a nurse giving the medicine to the patient, and the rule that a nurse
must give medicine to the patient if it is prescribed by the doctor, but not before it
has been signed. For the most general imperative description we should add the
ability to execute the give event within the loop after the first sign event and not
allow to terminate the flow if we have had a prescribe event without a subsequent
give event. So, we have to change the code of the loop as well as the condition for
exiting it.

As discussed in 2.2, van der Aalst and Pesic [van der Aalst & Pesic 2006a,
Pesic 2008] propose to use Linear-time Temporal Logic (LTL) as a declarative lan-
guage for describing the constraints of the workflow. LTL allows for describing a rich
set of constraints on the execution flow. However, as stated in sec. 2.2.3, this approach
suffers from the fact that the subsequent tools for execution and analysis will refer
to the LTL expression (or further compilations to e.g. Büchi automata) and not the
graphical notation. Also, the full generality of LTL may lead to a poor execution time.

This motivates researching the problem of finding an expressive declarative pro-
cess language where both the constraints as well as the run time state can be easily

3.1. Motivation 53
visualized and understood by the end user and also allows an effective execution.

We believe that the declarative process model language of dynamic condition re-
sponse graphs and its graphical representation proposed in this thesis is a promis-
ing candidate. Primarily, the model is inspired by and a conservative generaliza-
tion of the declarative process matrix model language [Lyng et al. 2008, Mukka-
mala et al. 2008] used by our industrial partner and prime event structures [Nielsen
et al. 1979, Winskel 1986, Winskel & Nielsen 1993]. The model has also got inspired
by the DECLARE [van der Aalst et al. 2010a, Pesic et al. 2007, van der Aalst et al. 2009]
and its declarative process languages [van der Aalst & Pesic 2006a, van der Aalst &
Pesic 2006b] in respect of the constrained based approach.

3.1.1 DCR Graphs as generalized Event Structures

In this section we will discuss about how distributed dynamic condition response
graphs developed as a sequence of three generalizations of prime event structures
as shown in the figure 3.1.

Figure 3.1: From Event Structures to DCR Graphs overview

The first generalization, named condition response event structures, is obtained
by adding a set Re of initially required response events and by generalizing the
causality relation into a condition and a response relations between events. The
condition relation imposes precedence among the events, where as the response is a
kind of follow-up relation. The initially required response events can be regarded as
goals that must be fulfilled (or falsified) in order for an execution to be accepting. That
is, for any event � ∈ Re, either � must eventually happen or it must become in conflict
with an event that has happened in the past. The response relation in some sense
corresponds to the response LTL pattern in [van der Aalst & Pesic 2006a, van der
Aalst & Pesic 2006b] as a dual relation to the usual condition relation: If an event �
is a response to an event � then � must happen at some point after event � happens

54 Chapter 3. Dynamic Condition Response Graphs
or become in conflict. However, note that the response pattern does not allow for
conflicts. Operationally, as we will see in the following section, one can think of the
event � as being added to the set Re of required responses when � happens.

Figure 3.2: Prescribe and Sign Example

Next we generalize condition response event structures by allowing each event to
happen many times and replacing the symmetric conflict relation by an asymmetric
relation which dynamically determines which events are included in or excluded from
the structure. To allow the graphs to represent intermediate run time state (e.g. like
the marking of a Petri Net) we also add sets of included (In) and executed (Ex) events
and refer to the triple of sets of pending responses, included and executed events as
the marking of the graph. This results in the model of Dynamic Condition Response
Graphs, short DCR Graphs.

Finally, we reach the model of Distributed Dynamic Condition Response Graphs
allowing for role based distribution by adding a set of principals and a set of roles
assigned to both principals and events, and define that an event can only be executed
by a principal assigned one of the roles that were further assigned to the event.

3.2 Related Work

There exists many different approaches to formally specify and enact business pro-
cesses and also It is not possible to provide a complete overview of related work,
especially in the area of business processes and workflows. In this section we give
a brief overview of some of the formal approaches and compare our work to them.

In contrast to imperative modeling languages, the authors in [van der Aalst &
Pesic 2006a, van der Aalst et al. 2009] have proposed C��D��, a declarative lan-
guage for modeling and enacting the dynamic business processes based on Linear
Temporal Logic (LTL). In [van der Aalst & Pesic 2006b], the authors have proposed
Declarative Service Flow language (DecSerFlow) to specify, enact and monitor ser-
vice flows, which is a sister language for C��D��. Both the languages share the
same concepts and are supported in the D������ [van der Aalst et al. 2009] tool.
They specifies ���� should be done, instead of specifying ��� it should be done,
there by leaving more flexibility to users. The enactment in both the languages is
defined by translating the constraints specified in LTL, into a Buchi automaton and
executing the workflow/service by executing the referring Buchi automaton. LTL be-
ing a very expressive language, the Declare tool suffers from efficiency problems in
executing models with large specification [van der Aalst et al. 2009]. Even though

3.2. Related Work 55
our approach is inspired from the ConDec, DecSerFlow models [van der Aalst &
Pesic 2006a, van der Aalst & Pesic 2006b] in respect of using declarative modeling
languages, but our model has fewer primitives than LTL, but more expressible than
LTL, as one can encode Büchi automaton into DCR Graphs (as shown in Sec. 3.5) and
thus makes it more expressible than LTL.

In [Cicekli & Yildirim 2000, Cicekli & Cicekli 2006] the authors have proposed
E���� C������� [Kowalski 1992] as a logic-based methodology for specification and
execution of workflows. E���� C������� [Kowalski 1992] is a logic programming
formalism for representing events and their effects in the context of database applica-
tions. In their approach, the authors have expressed the basic control flow primitives
of workflows as a set of logical formulas and used axioms of E���� C������� to spec-
ify activity dependency execution rules and agent assignments rules. Their workflow
model also supports enactment of concurrent workflow instances and iteration of ac-
tivities, but does not support specification and verification of global and temporal
constraints on workflow activities. Also, their approach is limited to imperative/pro-
cedural workflow modeling languages.

On the side of imperative modeling languages, Petri nets has been the ma-
jor formalism that has been studied and used extensively in the domain of work-
flows and business processes [Van Der Aalst et al. 1997, Verbeek & Aalst 2000, Hee
et al. 2004, Aalst et al. 2011]. Concurrent Transaction Logic (CTR) used in [Davulcu
et al. 1998] as a language for specifying, analysis, scheduling and verification of
workflows. In their framework, the authors have used CTR formulas for expressing
the local and global properties of workflows and reasoning about the workflows has
been done with the help of proof theory and semantics of logic. In [Senkul et al. 2002],
the authors have used Concurrent Constraint Transaction Logic (CCTR) which is flavor
of CTR integrated with Constraint Logic Programming for scheduling workflows. Like
the other logic programming systems, the authors in [Davulcu et al. 1998, Senkul
et al. 2002] have used the proof theory of CTR as run-time environment for enactment
of workflows. The CTR approach mainly aims at developing an algorithm for consis-
tency checking and verification of properties of workflows, but again only limited to
imperative modeling languages.

In [van der Aalst et al. 2009], the authors provided a detailed overview of formalisms
related to flexibility, ad-hoc and evolutionary changes. Authors in [Aalst 2001] ad-
dressed the problem of the dynamic change bug by computing the change regions
of a process based on their structure, where as the dynamic change bug was first
introduced by the autors in [Ellis et al. 1995]. Further, ADEPT Workflow Management
System [Reichert & Dadam 1998, Rinderle et al. 2003, Rinderle et al. 2004, Reichert
et al. 2003] offers advanced modeling concepts and features, like temporal constraint
management, ad-hoc workflow changes and schema evolution and it has studied the
problem related to dynamic changes in the context of workflows, but their approach
also limited to imperative workflow modeling.

Further, in [Vanderaalst et al. 2005] the authors have strongly advocated case
handling is a new paradigm for supporting flexible and knowledge intensive busi-
ness processes and hence it should be avoided in restricting users in their actions.

56 Chapter 3. Dynamic Condition Response Graphs
In [Adams et al. 2006, Adams 2007] authors identified pockets of flexibility that can
be selected later in the process as some sort of late binding at run time, where as
authors in [Sadiq et al. 2001] proposed a similar approach where specification of the
change itself integrated in the process.

Another major paradigm in business process modeling is the artifact-centric ap-
proach, which strongly argues that data design should be elevated to the same level
as control flows for data rich workflows and business processes. In this area, several
researchers [Nigam & Caswell 2003, Bhattacharya et al. 2007a, Liu et al. 2007] have
been working with artifact-centric or data-centric workflows. As part of the artifact-
centric models, a declarative approach has been taken in the recent years for spec-
ifying the life cycles of business entities, using the Guard- Stage-Milestone (GSM
model) life cycles model [Damaggio et al. 2011, Hull et al. 2011a, Hull et al. 2011b].
The GSM model is a declarative process model for specification of interactions be-
tween business entities and its operational semantics are based on rules similar
to ECA(Event Condition Action)-like rules from Active database community. In com-
parison, their main focus is on business artifacts which takes the data-centric view
of processes, where as our approach is on the business processes using declara-
tive modeling approaches where the control flow is more explicit than data-centric
processes.

3.3 Dynamic Condition Response Graphs

In this section, we will first introduce Condition Response Event Structures and
then introduce the formal semantics of DCR Graphs in Sec. 3.3.2. Later, we will
extend DCR Graphs with roles and principles and define distributed DCR Graphs.
Finally, for infinite runs we will define the execution semantics by mapping to Büchi-
automaton in Sec. 3.3.4.

3.3.1 Condition Response Event Structures

As an intermediate step towards dynamic condition response graphs, we generalize
lebeled event structures to allow for a notion of progress based on a response re-
lation. This model is interesting in itself as an extensional event-based model with
progress, abstracting away from the intentional representation of repeated behavior.
In particular we show that it allows for an elegant characterization of weakly fair
runs of event structures.

First let us recall the definition of a labeled event structure and configurations
from the last chapter 2.3.

Definition 3.3.1. A labeled event structure (ES) is a 5-tuple E = (E� Act� ≤� #� �)
where

(i) E is a (possibly infinite) set of events

(ii) Act is the set of actions

3.3. Dynamic Condition Response Graphs 57
(iii) ≤ ⊆ E × E is the causality relation between events which is a partial order

(iv) # ⊆ E × E is a binary conflict relation between events which is irreflexive and
symmetric

(v) � : E → Act is the labeling function mapping events to actions

The causality and conflict relations must satisfy the conditions that

1. ∀�� ��� ��� ∈ E��#�� ≤ ��� =⇒ �#���

2. ∀� ↓= {�� | �� < �} is finite for any � ∈ E.

A configuration of E is a set � ⊆ E of events satisfying the conditions

1. conflict-free: ∀�� �� ∈ ��¬�#��

2. downwards-closed: ∀� ∈ �� �� ∈ E��� ≤ � =⇒ �� ∈ �

A run ρ of E is a (possibly infinite) sequence of labelled events (�0� �(�0))� (�1� �(�1))� � � �
such that for all � ≥ 0� ∪0≤�≤� {��} is a configuration.

A run (�0� �(�0))� (�1� �(�1))� � � � is maximal if any enabled event eventually happen
or become in conflict, formally ∀� ∈ E� � ≥ 0�� ↓⊆ (�� ↓ ∪{��}) =⇒ ∃� ≥ 0�(�#�� ∨
� = ��).

Action names � ∈ Act represent the actions the system might perform, an event
� ∈ E labelled with � represents occurrence of action � during the run of the
system. The causality relation � ≤ �� means that event � is a prerequisite for the
event �� and the conflict relation �#�� implies that events � and �� both can not
happen in the same run, more precisely one excludes the occurrence of the other.
The definition of maximal runs follows the definition of weak fairness for concurrency
models in [Cheng 1995] and is equivalent to stating that the configuration defined by
the events in the run is maximal with respect to inclusion of configurations.

We now generalize labeled event structures to condition response event struc-
tures, by adding a dual response relation •→, such that {�� | � •→ ��} is the set of
events that must happen (or be in conflict) after the event � has happened for a run to
be accepting. The resulting structures, named condition response event structures, in
this way add the possibility to state progress conditions. The condition relation (→•)
is same as the causality relation (≤) in labeled event structure imposing precedence
among the events. Further, we also introduce a subset of the events Re of initial
responses, which are events that are initially required eventually to happen (or be-
come in conflict). In this way the structures can represent the state after an event
has been executed. As we will see below, it also allows us to capture the notion of
maximal runs.

Definition 3.3.2. A labeled condition response event structure (CRES) over an al-
phabet Act is a tuple (E� Re� Act� →•� •→� #� l) where

58 Chapter 3. Dynamic Condition Response Graphs
(i) (E� Act� →•� #� l) is a labelled event structure, referred to as the underlying event

structure, where →• is a partial order relation imposing precedence among
the events, satisfying the downward-closed condition of configuration in the
underlying labeled event structure such that ∀� ∈ �� �� ∈ E��� →• � =⇒ �� ∈ �

(ii) •→ ⊆ E × E is the response relation between events, satisfying that →• ∪ •→
is acyclic.

(iii) Re ⊆ E is the set of initial responses.

We define a configuration � and run ρ of a CRES to be a respectively a configura-
tion and run of the underlying event structure. We define a run (�0� �(�0))� (�1� �(�1))� � � �
to be accepting if ∀� ∈ E� � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��) and
∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��) . In words, any pending response event must
eventually happen or be in conflict. s

A labeled event structure can trivially be regarded as a condition response event
structure with empty response relation. This provides an embedding of labeled event
structures into condition response event structures which preserves configurations
and runs.

Proposition 3.3.1. The labelled event structure ES = (E� Act� ≤� #� �) has the same
runs as the condition response event structure CRES = (E� ∅� Act� ≤� ∅� #� �) for which
all runs are accepting.

Proof. The set of events (E), actions (Act), labeling function (�), conflict relation (#) are
same in both the CRES and ES and moreover the causality relation (≤) in ES is same
as the condition relation in CRES. Hence the given ES can be regarded as underlying
labeled event structure for given CRES, therefore, according to definition 3.3.2 both
will have same runs and configurations. Furthermore the set of initial responses (Re)
and response relation (•→) are empty, hence all the runs in CRES are accepting.

We can also embed event structures into CRES by considering every condition
to be also a response and all events with no conditions to be initial responses.
This characterizes the interpretation in [Cheng 1995] where only maximal runs are
accepting. In other words, the embedding captures the notion of weakly fair execution
of event structures.

Proposition 3.3.2. The labelled event structure ES = (E� Act� ≤� #� �) has the same
runs and maximal runs as respectively the runs and the accepting runs of the con-
dition response event structure CRES = (E� {� | � ↓= ∅}� Act� ≤� ≤� #� �).

Proof. The CRES and ES have same elements in respect of E� Act� ≤� #� � and hence
both of them will have same runs according to definition 3.3.2. Further in order
to prove the proposition, we need to prove that any maximal run in ES is also an
accepting run in CRES.

According to definition 3.3.1, a run (�0� �(�0))� (�1� �(�1))� � � � in ES is maximal if and
only if ∀� ∈ E� � ≥ 0�� ↓⊆ (�� ↓ ∪{��}) =⇒ ∃� ≥ 0�(�#�� ∨ � = ��). According to

3.3. Dynamic Condition Response Graphs 59
definition 3.3.2, the same run is accepting in CRES if and only if the run satisfies the
following conditions.

1. ∀� ∈ E� � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��)
In CRES, •→=≤ and hence �� •→ � =⇒ �� ≤ �. According to definition of
causality, we can imply that ∀� ∈ E� � ≥ 0�� ↓⊆ (�� ↓ ∪{��}).
But the maximal run in ES implies that ∀� ∈ E� � ≥ 0�� ↓⊆ (�� ↓ ∪{��}) =⇒
∃� ≥ 0�(�#�� ∨ � = ��).
So we can conclude that ∀� ∈ E� � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨ (� <
� ∧ � = ��) satisfies in CRES.

2. ∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��)
In CRES, Re = {� | � ↓= ∅}, hence all the events Re are enabled from the
beginning of the run. Since the run is maximal in ES, where all enabled events
will eventually get executed, we can conclude that ∀� ∈ Re�∃� ≥ 0�(�#�� ∨� =
��) will be satisfied in CRES.

Hence the proposition that any maximal run in ES is also an accepting run in CRES
holds.

Now we go further and define formally the event executions in condition response
event structures. In order define executions in a formal way, we first define when an
event is enabled in a condition response event structure in definition 3.3.3 and also the
result of executing an event in condition response event structure in definition 3.3.4.

Definition 3.3.3. For a labeled condition response event structure CRES = (E� Re� Act� →•
� •→� #� l) with a configuration �, we define that an event � is enabled at a configu-
ration � written as � � � if and only if,

(i) � ↓ ∈ �

(ii) {�� | ��#�} �∈ �

Definition 3.3.4. For a labeled condition response event structure CRES = (E� Re� Act� →•
� •→� #� l) with a configuration � and with an enabled event � � �, we define the
result of executing � is �� = � ∪ �.

Having defined when events are enabled for execution and the effect of executing
an event, now we finally define a finite execution in condition response event structure
and when it is accepting formally as follows.

Definition 3.3.5. For a labeled condition response event structure CRES = (E� Re� Act� →•
� •→� #� l) with a configuration �, we define an execution to be a finite sequence of
tuples {(��� ��� ��� ��

�)}�∈[�], each consisting of a configuration, an event, a label and
an another configuration such that

(i) � = �0

60 Chapter 3. Dynamic Condition Response Graphs
(ii) ∀� ∈ [�]��� = l(��)

(iii) ∀� ∈ [�]��� � ��

(iv) ∀� ∈ [�]���
� = �� ∪ ��

(v) ∀� ∈ [� − 1]���
� = ��+1

We say that an execution is accepting if ∀� ∈ E� � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨
(� < � ∧ � = ��) and ∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��). In words, any pending response
event must eventually happen or be in conflict.

3.3.2 DCR Graphs - Formal Semantics

We now go on to generalize condition response event structures to dynamic con-
dition response graphs (DCR Graphs). As opposed to event structures, a dynamic
condition response graph allows events to be executed multiple times and there are
no constraints on the condition and response relations. This allows for finite rep-
resentations of infinite behavior, but also for introducing deadlocks. Moreover, the
conflict relation is generalized to two relations for dynamic exclusion and inclusion
of events, which is more appropriate in a model where events can be re-executed
and has shown useful in practice as a primitive for skipping events and constraints.

Further, we also add a new relation milestone from our later work on the Nested
DCR Graphs [Hildebrandt et al. 2011c, Hildebrandt et al. 2011b], which has been dis-
covered during a case study involving modeling of a workflow from a case manage-
ment domain, that has been conducted jointly with our industrial partner Exformatics
A/S. The milestone is also a blocking relation (similar to condition), but milestone
blocks events based on the events in the set of pending responses (Re).

Being based on only five relations between events (condition, response, include,
exclude and milestone) and with the role assignment, the distributed dynamic condi-
tion response graphs can be simply visualized as a directed graph with a box for each
event as nodes and five different kinds of arrows. In this section, first we formally
define a dynamic condition response graph (def 3.3.6) and later by adding roles and
principals, we extend it to define distributed dynamic condition response graph in
the next section (sec 3.3.3).

Definition 3.3.6. A dynamic condition response graphis a tuple G = (E� M� Act� →•
� •→� →+� →%� →�� l) where

(i) E is the set of events, ranged over by �

(ii) M ∈ �(G) =��� �(E) × �(E) × �(E) is the marking and �(G) is the set of all
markings.

(iii) Act is the set of actions

(iv) →• ⊆ E × E is the condition relation.

3.3. Dynamic Condition Response Graphs 61
(v) •→ ⊆ E × E is the response relation.

(vi) →+� →%⊆ E×E is the dynamic include relation and exclude relation, satisfying
that ∀� ∈ E�� →+ ∩� →%= ∅,

(vii) →� ⊆ E × E is the milestone relation.

(viii) l : E → Act is a labelling function mapping every event to an action.

The condition (iv) and response (v) relations in DCR Graphs are similar to the
corresponding relations in CRES, except that now they are not constrained in any
way. In particular, we may have cyclic relations.

The marking (ii) M = (Ex� Re� In) ∈ �(G) consists of three sets of events, cap-
turing respectively which events have previously been executed (Ex), which events
are pending responses required to be executed or excluded (Re), and finally which
events are currently included (In). The set of pending responses Re of DCR Graphs
thus plays the same role as the set of initial responses in the CRES.

The dynamic inclusion/exclusion (vi) relations →+ and →%, represented by the
(partial map) ± : E × E � {+� %} , allow events to be included and excluded dy-
namically in the graph. The intuition is that only the currently included events are
considered in evaluating the constraints. This means that if an event � has event �
as condition, but the event � is excluded from the graph then it is no longer required
for � to happen. Similarly, if event � has the event � as response and if the event
� is excluded then it is no longer required to happen for the flow to be acceptable.
Formally, the relation � →+ �� expresses that, whenever event � happens, it will
include �� in the graph. On the other hand, � →% �� expresses that when � happens
it will exclude �� from the graph.

The milestone relation (vii) is a blocking relation similar to condition, but it blocks
based on events in the pending response set. For example, if an event � has the event
� as a milestone (� →� �), then event � is not allowed to execute, if the event � is in
the set of pending responses (Re). Similar to condition relation, the milestones are
blocking only if they are included in the graph.

Now we go further and define the notion when an event is enabled formally in
def 3.3.7. Before doing that, we will give the notation that will be employed in all
our later definitions.Notation 1. For a set A we write �(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write →ξ and ξ → for the set {� ∈ A | (∃�� ∈
ξ | � → ��)} and the set {� ∈ A | (∃�� ∈ ξ | �� → �)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number � we write [�] for the set
{1� 2� � � � � �}.Definition 3.3.7. For a dynamic condition response graph G = (E� M� Act� →•� •→
� →+� →%� →�� l) with marking M = {Ex� Re� In}, we define that an event � ∈ E is
enabled, written as M �G � if

i) � ∈ In

62 Chapter 3. Dynamic Condition Response Graphs
ii) (→•� ∩ In) ∈ Ex

iii) (→�� ∩ In) ∈ E \ Re

For an event � to be enabled, first of all, it must be included in the graph (i),
further, all the included events which are conditions to the event � must be in the set
of executed events (ii) and none of the included events that are milestones for it are
in the set of pending responses (iii).

We will now define formally the change to the marking when an enabled event
is executed in def 3.3.8. First the event is added to the set of executed events (Ex)
and removed from the set of pending responses (Re). Then, all the events that are a
response to the event are added to the set of pending responses. Note that if an event
is a response to itself, it will remain in the set of pending responses after execution.
Similarly, the set of included (In) events is updated by including and excluding events
that have include and exclude relation from the executed event. Further an event ��

can not be both included and excluded by the same event �, but an event may
include/exclude by itself. Also an event may trigger itself as a response and/or can
have itself as a condition or a milestone.

Definition 3.3.8. For a dynamic condition response graph G = (E� M� Act� →•� •→
� →+� →%� →�� l) with marking M = {Ex� Re� In} and with an enabled event M �G �,
the result of executing the event � will be a dynamic condition response graph
G = (E� M�� Act� →•� •→� →+� →%� →�� l), where M� = M ⊕G � = {Ex�� Re�� In�} such
that

i) Ex� = Ex ∪ {�}

ii) Re� = (Re \ {�})∪ �•→

iii) In� = (In ∪ �→+)\ �→%

Having defined when events are enabled for execution and the effect of executing
an event, we define finite and infinite runs/executions in DCR Graphs and when they
are accepting. Intuitively, an execution is accepting if any required, included response
in any intermediate marking is eventually executed or excluded. We define a run and
an accepting run in DCR Graphs as follows in definition 3.3.9.

Definition 3.3.9. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define an execution of G to be a (finite or infinite) sequence of
tuples {(M�� ��� ��� M�

�)}�∈[�] each consisting of a marking, an event, a label and another
marking (the result of executing the event) such that

i) M = M0

ii) ∀� ∈ [�]��� ∈ l(��)

iii) ∀� ∈ [�]�M� �G ��

iv) ∀� ∈ [�]�M�
� = M� ⊕G ��

3.3. Dynamic Condition Response Graphs 63
v) ∀� ∈ [� − 1]�M�

� = M�+1.

Further, we say the execution (or a run) is accepting if ∀� ∈ [�]�
�
∀� ∈ In� ∩ Re��∃� ≥

���� = � ∨ � �∈ In�
�)

�
, where M� = (Ex�� In�� Re�) and M�

� = (Ex�
� � In�

� � Re�
�).

Finally we say that that a marking M� is reachable in G (from the marking M) if
there exists a finite execution ending in M� and let �M→∗ (G) denote the set of all
reachable markings from M.

From the semantics defined above, we can construct a labelled transition system
with an accepting condition for finite runs as given in def 3.3.10.

Definition 3.3.10. For a dynamic condition response graph G = (E� M� Act� →•� •→
� →+� →%� →�� l) we define the corresponding labelled transition system TS(G) to be
the tuple

(�(G)� M� ���(G)� →)

where ���(G) = E × Act is the set of labels of the transition system, M is the initial
marking, and →⊆ �(G)×���(G)×�(G) is the transition relation defined by M (���)−−→
M ⊕G � if M �G � and � ∈ l(�).

We define a run �0� �1� � � � of the transition system to be a sequence of labels of
a sequence of transitions M�

(�����)−−−→ M�+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that ∀� ≥ 0� � ∈ In� ∩ Re��∃� ≥ ��((� = �� ∨ � �∈ In�+1)). In words, a run
is accepting/completed if no required response event is continuously included and
pending without it happens or become excluded. Finally, we extend the transition
relation to a relation between graphs by (E� M� Act� →•� •→� →+� →%� →�� l) (���)−−→
(E� M ⊕G �� Act� →•� •→� →+� →%� →�� l) if M (���)−−→ M ⊕G �.

If one only want to consider finite runs, which is common for workflows, the
acceptance condition degenerates to requiring that no pending response is included
at the end of the run. This corresponds to defining all states where Re ∩ In = ∅ to be
accepting states and define the accepting runs to be those ending in an accepting
state. If infinite runs are also of interest (as e.g. for reactive systems and the LTL
logic) the acceptance condition can be captured by a mapping to a Büchi-automaton
with τ-events which we will define in Sec. 3.3.4.

A condition response event structure(CRES) can be represented as a dynamic
condition response graph by making every event exclude itself and encode the conflict
relation by defining any two conflicting events to mutually exclude each other as
shown in figure 3.3.

Proposition 3.3.3. The condition response event structure CRES = (E� Re� Act� →•
� •→� #� �) has the same executions and accepting executions as the dynamic con-
dition response graph G = (E� M� Act� →•� •→� →+� →%� →�� l) with marking M =
{Ex� Re� In} where

i) Ex = ∅� In = E

64 Chapter 3. Dynamic Condition Response Graphs

(a) # relation in CRES (b) Encoding of # in DCR Graphs

Figure 3.3: Encoding of conflict from CRES as mutual exclusion in DCR Graphs.

ii) � →% �� if � = �� or �#�� and undefined otherwise.

iii) →� = ∅� →+= ∅

Proof. According to the definition 3.3.5, an execution in CRES is a finite sequence of
tuples {(��� ��� ��� ��

�)}�∈[�] such that � = �0, ∀� ∈ [�]��� = l(��) ∧ �� � �� ∧ ��
� = �� ∪ ��

and ∀� ∈ [� − 1]���
� = ��+1.

For a DCR Graph G, an execution is defined (definition 3.3.9) as a finite/infinite
sequence of tuples {(M�� ��� ��� M�

�)}�∈[�] such that M = M0 and ∀� ∈ [�]��� ∈ l(��) ∧
M� �G �� ∧ M�

� = M� ⊕G �� and ∀� ∈ [� − 1]�M�
� = M�+1.

In order to prove the proposition, first we have to prove that any finite execution in
CRES is also a valid finite execution in G and then we will prove that any accepting
execution in CRES is also accepting in G.

(I) CRES has same executions as G.
Here we use proof by induction and show that the proposition is valid for base
case and then we will prove it for inductive step, assuming that if proposition is
valid for a finite length of execution for ∀� ∈ [�], then the proposition also valid
for for ∀� ∈ [� + 1].
The set of events (E), actions (Act), labeling function (l),initial response set (Re),
condition relation (→•), response relation (•→) are same in both CRES and G.

i) Base case (i = 0)
In the base case where i = 0, the execution in CRES is {(�0� �0� l(�0)� ��

0)}
and the tuple (�0� �0� �0� ��

0) implies that �0 = ∅, �0 ↓ = ∅ and �0 = l(�0).
We have to show that in G for the base case (i=0), execution for event �0 is
valid and possible, that means we have to show that {(M0� �0� �0� M�

0)} is a
valid execution in G.
In M0, we have Ex0 = ∅� Re0 = Re� In0 = E and we can imply the following
a) �0 ∈ E =⇒ �0 ∈ In0

b) (�0 ↓ = ∅) =⇒ (→•�0 = ∅) =⇒ (→•�0 ∩ In0) ⊆ Ex0

c) (→� = ∅) =⇒ (→��0 = ∅) ⊆ E \ Re0.
Based on above implications, we can conclude that M0 �G �0 and also we
know �0 = l(�0) from the CRES.
Therefore {(M0� �0� �0� M�

0)} is a valid execution in G with M�
0 = (Ex ∪

{�0}� Re \ {�})∪ �•→� In \ ({�0} ∪ {�� | �0 →% ��})).

3.3. Dynamic Condition Response Graphs 65
ii) Inductive step:

Lets us assume that the proposition holds for a fixed length for ∀� ∈ [�] and
we have to show that the proposition also holds for ∀� ∈ [� + 1].
At the position � = �, we have the following executions.
CRES: {(��� ��� ��� ��

�)}�∈[�] and G: {(M�� ��� ��� M�
�)}�∈[�].

Since the proposition holds until the position �, the executions in both CRES
and G will have label sequences containing exactly the same events and
labels and therefore we can imply that the set of executed events in both
CRES and G are the same, which means Ex� = ��.
Further, let us say that the tuple CRES at position � = �+1 is (��+1� ��+1� ��+1� ��

�+1)
and then we have to show that there exists a tuple:(M�+1� ��+1� ��+1� M�

�+1)
in G at position � = � + 1.
From the tuple in CRES: (��+1� ��+1� ��+1� ��

�+1), we can imply the following.
C-a) ��+1 = l(��+1),
C-b) ��+1 ↓∈ ��+1,
C-c) {�� | ��#��+1} �∈ ��+1 ,
C-d) ��+1 �∈ ��+1 as events in CRES can happen only once.
The marking at position � = �+1 is M�+1 = (Ex�+1 = Ex� ∪{��}� Re�+1� In�+1).
At the position � = � + 1 in G, we can imply the following,

G-a) We have (��+1 = �� ∪ {��}) ∧ (Ex�+1 = Ex� ∪ {��}) ∧ (Ex� = ��) =⇒
Ex�+1 = ��+1 and with the definition of →% in the proposition, we can
imply that {�� | ��#��+1} �∈ ��+1 ∧ ��+1 �∈ ��+1 =⇒ ({�� | �� →%
��+1} ∪ {��+1}) �∈ Ex�+1.
Further In0 = E =⇒ ��+1 ∈ In0 and with ({�� | �� →% ��+1} ∪
{��+1}) �∈ Ex�+1, we can conclude that ��+1 ∈ In�+1, as the only way
to exclude an event in G is by executing itself or any events which
have have an exclude relation to it, which has not happen till � = �+1.

G-b) (��+1 ↓ ∈ ��+1) =⇒ (→•��+1 = Ex�) =⇒ (→•��+1 ∩ In�+1) ⊆ Ex�+1

G-c) (→� = ∅) =⇒ (→��� = ∅) ⊆ E \ Re�

G-d) From CRES we also know that ��+1 = l(��+1).

From the definition 3.3.7 for enabled event in Gand based on the above
implications, we can conclude that M�+1 �G ��+1. Therefore, the tuple:
(M�+1� ��+1� ��+1� M�

�+1) exists in G at � = � + 1 position and there by we can
conclude that the execution in CRES: {(��� ��� ��� ��

�)}�∈[�+1] is same as G:
{(M�� ��� ��� M�

�)}�∈[�+1]. Hence we have showed that if the proposition holds
for a fixed length � = �, then it holds for length � = � + 1.

Since we have proved both base case and inductive step, we can conclude that
both CRES has same executions as that of G.

(II) CRES has same accepting runs as G
According to definition 3.3.5 a run in CRES is accepting if and only if,

66 Chapter 3. Dynamic Condition Response Graphs
C-a) ∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��)
C-b) ∀� ∈ E� � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��))

According to definition 3.3.9 a run in G is accepting if and only if, ∀� ∈ [�]�
�
∀� ∈

In� ∩ Re��∃� ≥ ���� = � ∨ � �∈ In�
�)

�
, where M� = (Ex�� In�� Re�) and M�

� =
(Ex�

� � In�
� � Re�

�). Informally, an execution in G is accepting if any required, included
response in any intermediate marking is eventually executed or excluded.
To prove the proposition for accepting runs, we again use proof by induction,
where we show that the proposition is valid at base case (� = 0) is valid and
then as part of inductive step we assume that the proposition is valid for a se-
quence of fixed length ∀� ∈ [�], then we prove that the proposition is also valid
for a sequence of length ∀� ∈ [� + 1].

i) Base case (i = 0)
In the base case where i = 0, the execution in CRES is accepting, hence
we have the result: ∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��)
In G at the M0, we have Ex0 = ∅� Re0 = Re� In0 = E and we can imply the
following
a) In0 = E ∧ Re0 = Re =⇒ (Re0 ∩ In0) = Re
b) ∀� ≥ 0���#� =⇒ ∀� ≥ 0��� →% � =⇒ ∀� ≥ 0�� �∈ In�

�

Using above two results, we can show that
∀� ∈ Re�∃� ≥ 0�(�#�� ∨ � = ��) =⇒ ∀� ∈ In0 ∩ Re0�∃� ≥ 0�(� �∈ In�

� ∨ � =
��), which concludes that the execution in G at � = 0 is also accepting.

ii) Inductive step:
Since the executions in G and CRES are accepting for a finite sequence
∀� ∈ [�], we have the following conditions satisfied.
G: ∀� ∈ [�]�

�
∀� ∈ In�∩Re��∃� ≥ ���� = �∨� �∈ In�

�)
�
, where M� = (Ex�� In�� Re�)

and M�
� = (Ex�

� � In�
� � Re�

�).

CRES: ∀� ∈ E� � ≥ � ≥ 0��� •→ � =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��))
The same can be rewritten using the ∀� ∈ [�] notation and �� •→= {� |
�� •→ �} as
CRES: ∀� ∈ [�]�

�
∀� ∈�� •→ =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��))

�

In order to prove that the proposition for inductive step, we have to show
that the execution in G is also accepting for sequence ∀� ∈ [� + 1], that
means, formally we have to prove that
G: ∀� ∈ [� + 1]�

�
∀� ∈ In� ∩ Re��∃� ≥ ���� = � ∨ � �∈ In�

�)
�
, where M� =

(Ex�� In�� Re�) and M�
� = (Ex�

� � In�
� � Re�

�).

But we know that execution in G is accepting for ∀� ∈ [�], so we can rewrite
the above statement as
∀� ∈ [� + 1]�

�
∀� ∈ In� ∩ Re��∃� ≥ ���� = � ∨ � �∈ In�

�)
�

3.3. Dynamic Condition Response Graphs 67
= ∀� ∈ [�]�

�
∀� ∈ In� ∩Re��∃� ≥ ���� = �∨� �∈ In�

�)
�
∧

�
∀� ∈ In�+1 ∩Re�+1�∃� ≥

� + 1��� = � ∨ � �∈ In�
�)

�

As we know that first part of statement is satisfied (as exe is accepting for
∀� ∈ [�]), in order to prove the proposition for the inductive step, we only
need to show that

�
∀� ∈ In�+1 ∩ Re�+1�∃� ≥ � + 1��� = � ∨ � �∈ In�

�)
�

is
satisfied.

i) According to definition for exclude relation (→%) in G,
∀� ≥ 0���#� =⇒ ∀� ≥ 0��� →% �.
Further according to definition 3.3.8,
∀� ≥ 0��� →% � =⇒ ∀� ≥ 0�� �∈ In�

� and hence
∀� ≥ 0���#� =⇒ ∀� ≥ 0�� �∈ In�

�

ii) Since (→+= ∅) =⇒ (�→+= ∅)
(In�+1 = (In�∪ ��+1 →+)\ ��+1 →%) =⇒ ((In�+1 = In�\ ��+1 →%) and
further we have
Re�+1 = (Re� \ {��+1})∪ ��+1 •→
Since ��+1 →% ��+1, we can rewrite In�+1 ∩ Re�+1 as
In�+1 ∩ Re�+1 =

�
(In� ∩ Re�)∪ ��+1 •→

�
\ ��+1 →%

Informally the set In�+1 ∩ Re�+1 will contain all the included responses
from In� ∩ Re� and the newly added response events (��+1 •→) and sub-
tracted with the events excluded by ��+1 that is (��+1 →%).

Since always it is the case that�
((In� ∩ Re�)∪ ��+1 •→)\ ��+1 →%

�
⊆

�
(In� ∩ Re�)∪ ��+1 •→

�
, if we prove

that the events in
�
(In� ∩ Re�)∪ ��+1 •→

�
are eventually executed or

excluded, then the proposition holds for ∀� ∈ [� + 1].
Hence if we prove that the condition

�
∀� ∈ ((In� ∩ Re�)∪ ��+1 •→)�∃� ≥

� + 1��� = � ∨ � �∈ In�
�)

�
will be satisfied, then it will be implicitly satisfy

the condition,
�
∀� ∈ In�+1 ∩ Re�+1�∃� ≥ � + 1��� = � ∨ � �∈ In�

�)
�
.

iii) Since the execution in G is accepting for ∀� ∈ [�], we know that
∀� ∈ [�]�

�
∀� ∈ In� ∩ Re��∃� ≥ ��(�� = � ∨ � �∈ In�

�)
�
.

So in order to prove that
�
∀� ∈ ((In� ∩ Re�)∪ ��+1 •→)�∃� ≥ � + 1��� =

� ∨ � �∈ In�
�)

�
will be satisfied, we need to show that ∀� ∈��+1 •→ �∃� ≥

� + 1�(�� = � ∨ � �∈ In�
�).

Since the we know that the execution in CRES is accepting for sequence
∀� ∈ [� + 1], we also have the following condition satisfied.
CRES: ∀� ∈ [� + 1]�

�
∀� ∈�� •→ =⇒ ∃� ≥ 0�(�#�� ∨ (� < � ∧ � = ��))

�

For � = � + 1 in the above statement, we can imply that the following
statement is satisfied.
∀� ∈��+1 =⇒ ∃� ≥ 0�(��#� ∨ (� < � ∧ � = ��)).

Using the result ∀� ≥ 0���#� =⇒ ∀� ≥ 0�� �∈ In�
� which is proved

above

68 Chapter 3. Dynamic Condition Response Graphs
∀� ∈��+1 =⇒ ∃� ≥ 0�(��#� ∨ (� < � ∧ � = ��)) =⇒ ∀� ∈��+1 =⇒
∃� ≥ 0�(� �∈ In�

� ∨ (� < � ∧ � = ��))
Further, ∀� ∈��+1 =⇒ ∃� ≥ 0�(� �∈ In�

� ∨ (� < � ∧ � = ��)) =⇒
∀� ∈��+1 =⇒ ∃� ≥ ��(� �∈ In�

� ∨ (� = ��)), which is the desired result to
prove the proposition that execution in G is accepting for ∀� ∈ [� + 1].

Since we have proven the proposition for base case and for inductive step,
we can conclude that CRES has same executions that are accepting as those
of G.

3.3.3 Distributed Dynamic Condition Response Graphs

We now define distributed dynamic condition response graphs by adding roles and
principals as follows.Definition 3.3.11. A distributed dynamic condition response graph is a tuple DG =
(G� Roles� P� as) where

1. G = (E� M� →•� •→� →�� →+� →%� Act� l) is a dynamic condition response graph,

2. Roles is a set of roles ranged over by � ,

3. P is a set of principals (e.g. persons or processors) ranged over by � and

4. as ⊆ (P ∪ Act) × Roles is the role assignment relation to principals and actions.

For a distributed dynamic condition response graph, the role assignment (4)
relation indicates the roles (access rights) assigned to principals and which roles
gives right to execute which actions. As an example, assume that P���� ∈ P and
D����� ∈ Roles, then if P���� as D����� and ���� as D����� then P���� as a doctor
can ���� as a doctor.

Now we go further and define when an event � is enabled in a distributed dynamic
condition response graph by extending the definition of enabled event (def 3.3.7) in
DCR Graph. For an event to be enabled in distributed dynamic condition response
graph, in addition to the condition that it must have enabled in its DCR Graph, the
label for the event must have been assigned to a role and also a principal must be
assigned to that role.Definition 3.3.12. For a distributed dynamic condition response graph DG = (G� Roles� P� as)
with G = (E� M� →•� •→� →�� →+� →%� Act� l), we define that an event � is enabled
and write as M � DG �, if M � G �, � as � and � as � .

The result of executing an enabled event in distributed dynamic condition re-
sponse graph will have the same changes as that of executing an enabled event
in dynamic condition response graph, as event execution only involves changes to
the marking, which are not affected by the roles and principals of a distributed
DCR Graph.

3.3. Dynamic Condition Response Graphs 69
Definition 3.3.13. For a distributed dynamic condition response graph DG = (G� Roles� P� as)
where G = (E� M� →•� •→� →�� →+� →%� Act� l), with M � DG �, executing event � in
DG will have the same effect as that of executing the event � in the underlying
DCR Graph G and in both cases the resulting marking will be the same.

Now we will define a run in distributed DCR Graph and when it is accepting in
as follows,

Definition 3.3.14. For a distributed dynamic condition response graph DG = (G� Roles� P� as)
where G = (E� M� →•� •→� →�� →+� →%� Act� l) with marking M = (Ex� Re� In), we de-
fine a run (finite or infinite) to be a sequence of labels (�0� (�0� �0� �0))(�1� (�1� �1� �1)) � � �
of a sequence of transitions M�

(���(��������))−−−−−−−→ M�+1 for � ≥ 0 starting from initial mark-
ing such that M� � DG �� and M�+1 = M� ⊕DG ��. We further define that a run to
be accepting if its underlying DCR Graph G is accepting i.e.

�
∀� ≥ 0� � ∈ Re��∃� ≥

��((� = �� ∨ � �∈ In�+1))
�
.

Based on the semantics defined above, we can now define labelled transition
system semantics for distributed dynamic condition response graph.

Definition 3.3.15. For a distributed dynamic condition response graph DG = (G� Roles� P� as)
we define the corresponding labelled transition system TS(DG) to be the tuple

(�(G)� M� ���(G)� →)

where ���(G) = E× (P×Act×Roles) is the set of labels of the transition system, M is
the initial marking, and →⊆ �(G)×���(G)×�(G) is the transition relation defined
by M (��(�����)−−−−−→ M⊕DG � if M �DG � and M (���)−−→ M⊕G �. The transition system TS(DG)
will have same states as that of the underlying dynamic condition response graph
G , but with the transitions labels E × (P × Act × Roles) instead of E × Act. We define
a run to be (finite or infinite) sequence of labels (�0� (�0� �0� �0))� (�1� (�1� �1� �1)) � � � of
a sequence of transitions M�

(���(��������))−−−−−−−→ M�+1 starting from the initial marking. We
define a run to be accepting if the underlying run of the DCR Graphs is accepting.

3.3.4 Infinite runs - From DCR Graphs to Büchi-automata

In this section, we show how to characterize the acceptance condition for DCR Graphs
by a mapping to the standard model of Büchi-automata. Recall that a Büchi-
automaton is a finite state automaton accepting only infinite runs, and only the
runs that pass through an accepting state infinitely often. Acceptance of finite runs
can be represented in the standard way by introducing a special silent event, e.g.
a τ-event, which may be viewed as a delay. If an infinite accepting run contains
infinitely many delays it then represent an accepting run containing only a finite
number of (real) events. We define a Büchi-automaton with τ-event as follows.

Definition 3.3.16. A Büchi-automaton with τ-event is a tuple (S� �� E�τ� →⊆ S ×
E�τ × S� F) where S is the set of states, � ∈ S is the initial state, E�τ is the set

70 Chapter 3. Dynamic Condition Response Graphs
of events containing the special event τ , →⊆ S × E�τ × S is the transition relation,
and F is the set of accepting states. A (finite or infinite) run is a sequence of labels
not containing the τ event that can be obtained by removing all τ events from a
sequence of labels of transitions starting from the initial state. The run is accepting
if the sequence of transitions passes through an accepting state infinitely often.

The mapping from DCR Graphs to Büchi-automata is not entirely trivial, since
we at any given time may have several pending responses and thus must make sure
that all of them are eventually executed or excluded. To make sure we progress, we
assume any fixed order of the finite set of events E of the given dynamic condition
response graph. For an event � ∈ E we write ���� (�) for its rank in that order and
for a subset of events E� ⊆ E we write ���(E�) for the event in E� with the minimal
rank.

Figure 3.4: The Büchi-automaton for DCR Graph from Fig. 3.6 annotated with state
information

Definition 3.3.17. For a finite distributed dynamic condition response graph DG =
(G� Roles� P� as) where DCR Graph G = (E� M� Act� =⇒� l) with a relation set =⇒ =
{→•� •→� ±� →�}, E = {�1� � � � � ��} and ���� (��) = �, we define the corresponding
Büchi-automaton with τ-event to be the tuple B(DG) = (S� �� →⊆ S × E�τ × S� F)
where

• S = �(G) × {1� � � � � �} × {0� 1} is the set of states,

3.3. Dynamic Condition Response Graphs 71
• E�τ = (E × (P × Act × Roles)) ∪ {τ} is the set of events,

• � = (M� 1� 1) if In ∩ Re = ∅, and � = (M� 1� 0) otherwise

• F = �(G) × {1� � � � � �} × {1} is the set of accepting states and

• →⊆ S × E�τ × S is the transition relation given by two cases, (A) and (B) as
follows

(A) (M�� �� �) τ−−−−→ (M�� �� � �) where

(i) � � = 1 if In� ∩ Re� = ∅ otherwise � � = 0.

���

(B) (M�� �� �)
(�� (�� �� �))
−−−−−−−−→ (M��� ��� � �) where

(i) M� = (Ex�� Re�� In�) and M�� = (Ex� ∪ {�}� Re��� In��)

(ii) M� (�� (�� �� �))
−−−−−−−−−→ M�� is a transition of TS(DG)

(iii) � � = 1 if
(a) In�� ∩ Re�� = ∅ or
(b) ���(M�) ∈ (In� ∩ Re�\(In�� ∩ Re��)) ∪ {�} or
(c) M� = ∅ and ���(In� ∩ Re�) ∈ (In� ∩ Re�\(In�� ∩ Re��)) ∪ {�}
otherwise � � = 0.

(iv) �� = ���� (���(M�)) if ���(M�) ∈ (In� ∩ Re�\(In�� ∩ Re��)) ∪ {�} or else
(v) �� = ���� (���(In� ∩ Re�)) if M� = ∅ and ���(In� ∩ Re�) ∈ (In� ∩ Re�\(In�� ∩

Re��)) ∪ {�} or else
(vi) �� = � otherwise.

for M� = {� ∈ In� ∩ Re� | ���� (�) > �}.

The index � is used to make sure that no event stays forever included and in the
pending response set without being executed. Finally, the flag � indicates if the state
is accepting or not.

Condition (Ai and Biii) defines when a state is accepting. Either there are no in-
cluded pending responses in the resulting state (Ai) or the included pending response
with the minimal rank above the index � was either excluded or executed (B(iii)b).
Alternatively, if the set of included pending responses with rank above the index � is
empty and the included pending response with the minimal rank is excluded or exe-
cuted (B(iii)c), then also the resulting state will be accepting. Condition (Biv) records
the new rank if the resulting state is accepting according to condition (B(iii)b) and
similarly when the state is accepting according to condition (B(iii)c), the condition
(Bv) records the new rank.

72 Chapter 3. Dynamic Condition Response Graphs

Figure 3.5: The Büchi-automaton with stratified view

To give a simple example of the mapping, let us consider the dynamic condition
response graph in Fig. 3.6 and the corresponding Büchi-automaton in Fig. 3.4.

The key point to note is that the automaton enters an accepting state if there is
no pending responses, or if the pending response which is the minimal ranked event
according to the index � is executed or excluded. State S7 and S11 illustrate the use
of the rank: Both states have the two events s (having rank 1) and gm as pending
responses. In state S7 only executing event s leads to an accepting state (S10). The
result of executing event gm is to move to state S9 which is not accepting. Dually,
in state S11 only executing event gm leads to an accepting state (S16). The result
of executing event s is to move to state S12 which is not accepting.

Fig. 3.5 shows a stratified view of the automaton, dividing the state sets according
to the rank � in order to emphasize the role of the rank in guaranteeing progress.

3.4. DCR Graphs - Graphical Notation 73
3.4 DCR Graphs - Graphical Notation

After introducing the semantics for the DCR Graphs in the previous sections, we
are now ready to introduce graphical notation for DCR Graphs with help of small
workflow examples from healthcare domain. The examples are from a small oncol-
ogy healthcare workflow previously identified during a field study at Danish hospi-
tals [Lyng et al. 2008].

Let us first consider a small example shown in 3.6 modeled using DCR Graphs. It
contains three events: prescribe medicine (the doctor calculates and writes the dose
for the medicine), sign (the doctor certifies the correctness of the calculations) and give
medicine (the nurse administers medicine to patient). The events are also labelled
by the assigned roles (D for Doctor and N for Nurse).

Figure 3.6: Give Medicine Example

The events prescribe medicine and sign are related by both the condition relation
(→•) and the response relation (•→). The condition relation means that the prescribe
medicine event must happen at least once before the sign event. The response relation
enforces that, if the prescribe medicine event happen, subsequently at some point the
sign event must happen for the flow to be accepted. Similarly, the response relation
between prescribe medicine and give medicine enforces that, if the prescribe medicine
event happen, subsequently at some point the give medicine event must happen for the
flow to be accepted. Finally, the condition relation between sign and give medicine
enforces that the signature event must have happened before the medicine can be
given. Note the nurse can give medicine many times, and that the doctor can at
any point choose to prescribe new medicine and sign again. (This will not block
the nurse from continue to give medicine. The interpretation is that the nurse may
have to keep giving medicine according to the previous prescription). The transition
system for finite runs for the prescribe medicine example from fig 3.6 is shown in the
fig. 3.7.

74 Chapter 3. Dynamic Condition Response Graphs

Figure 3.7: Transition system for DCR graph from fig 3.6

The dynamic inclusion and exclusion of events is illustrated by an extension to the
scenario (also taken from the real case study): If the nurse distrusts the prescription
by the doctor, it should be possible to indicate it, and this action should force either
a new prescription followed by a new signature or just a new signature. As long the
new signature has not been added, medicine must not be given to the patient.

This scenario can be modeled as shown in Fig. 3.8, where one more action don’t
trust is added. Now, the nurse have a choice to indicate distrust of prescription and
thereby avoid give medicine until the doctor re-execute sign action. Executing the
don’t trust action will exclude give medicine and makes the sign as pending response.
So the only way to execute give medicine action is to re-execute sign action which will
then include give medicine. Here the doctor may choose to re-do prescribe medicine
followed by sign actions (new prescription) or simply re-do sign.

In Fig. 3.9 below we propose a graphical notation that illustrates the run-time
information during two different runs of the extended scenario in Fig. 3.8. We show the
events as boxes just as in the graphical notation for the dynamic condition response
graph and use three different small icons (Ø,

√
, !) above the boxes to show if the

event is enabled (i.e. not blocked by any conditions), if it has been executed (i.e.

3.4. DCR Graphs - Graphical Notation 75

Figure 3.8: Give Medicine Example with Check

included in the set E in the marking), and if it is required as a response (i.e. included
in the set R in the marking). We indicate that an event is excluded (i.e. not included
in the set I in the marking) by making the box around the event dashed.

Figure 3.9: Runtime for Give Medicine Example from 3.8

Fig 3.9 shows the four states of a run in the workflow process in Fig. 3.8, starting

76 Chapter 3. Dynamic Condition Response Graphs
in the initial state where all events except prescribe medicine is blocked. The second
state is the result of executing prescribe medicine, now showing that sign and give
medicine are required as responses and that sign is no longer blocked. The third
state is the result of executing the sign event, which enables give medicine and don’t
trust. Finally, the fourth state is the result of executing the give medicine event,
excluding the don’t trust event.

Similarly, Fig. 3.10 shows the six states of a run where the nurse executes don’t
trust in the third step, leading to a different fourth state where give medicine is
excluded (but still required as response if it gets included again) and sign is required
as response. The fifth state shows the result of the doctor executing sign, which
re-includes give medicine, which is then executed, leading to the final state where all
events have been executed, and don’t trust is excluded.

Figure 3.10: Runtime for Give Medicine Example with Don’t trust from 3.8

In order to model milestone relation, we further extend the healthcare with two
more events receive tests, to receive test results that were previously ordered (with
doctor/nurse roles) and examine tests, to examine the receive test results (with doctor
role) as shown in the figure 3.11. The intuition is that, if the test results have been
received, then the doctor must examine those results before making a prescription.
The situation is modeled with a response and condition relation between receive
tests and examine tests and with a milestone relation between examine tests and
prescribe medicine.

3.4. DCR Graphs - Graphical Notation 77

Figure 3.11: Extended Give Medicine Example with milestone relation

Receiving test results (may be in between the prescriptions) will create a pending
response on the examine tests event and the prescribe medicine event will be blocked
because of the milestone relation between examine tests and prescribe medicine,
until the doctor examine the results. One may argue that a condition and response
relation could have been be used instead of milestone relation in between examine
tests and prescribe medicine, but in that case the prescribe medicine will be blocked
only for the first time (due to condition relation) and on top of that, the doctor will
be compelled to do prescribe medicine (due to response relation) afterwards, which
may not be necessary e.g. when the test results are good.

Finally, we will show how the above healthcare example can be expressed in the
formal definitions of distributed DCR Graphs (def 3.3.11) in the listing 3.1.

Listing 3.1: Formal representation of healthcare example in DCR Graphs

D i s t r i b u t e d DCR graph DG = (G� Roles� P� as) where

G = (E� M� Act� =⇒� l)

E = Act ={ r e c e i v e t e s t s , examine t e s t s , p r e s c r i b e medicine , s ign , g i v e
medicine , don ’ t t r u s t }

M = (∅� ∅� E)

l = { (r e c e i v e t e s t s , r e c e i v e t e s t s) , (examine t e s t s , examine t e s t s) , . .
. }

78 Chapter 3. Dynamic Condition Response Graphs
=⇒ = {→•� •→� ±� →�} where

→• ={ (r e c e i v e t e s t s , examine t e s t s) , (p r e s c r i b e medicine , s ign) , (s ign ,
g i v e medic ine) , (s ign , don ’ t t r u s t) }

•→ ={ (r e c e i v e t e s t s , examine t e s t s) , (p r e s c r i b e medicine , s ign) , (
p r e s c r i b e medicine , g i v e medic ine) , (don ’ t t r u s t , s ign) }

→+ ={ (s ign , g i v e medic ine) , (s ign , don ’ t t r u s t) }

→% ={ (don ’ t t r u s t , g i v e medic ine) , (g i v e medicine , don ’ t t r u s t) }

→� ={ (examine t e s t s , p r e s c r i b e medic ine) }

Roles ={D , N}

P ={ Peter , Rosy}

as ={ (Peter , D) , (Rosy , N) , (r e c e i v e t e s t s , N) , (r e c e i v e t e s t s , D) , (
examine t e s t s , D) , (p r e s c r i b e medicine , D) , (s ign , D) , (g i v e
medicine , N) , (don ’ t t r u s t , N) }

.

3.5 Expressiveness of DCR Graphs

In this section, we will discuss about expressiveness of DCR Graphs. Despite the
simplicity of the the model with five relations, the DCR Graphs model can express
all ω-regular languages. In order to show that, we will encode Büchi automaton into
DCR Graphs and show that both büchi automaton and DCR Graphs will have same
runs and accepting runs.

We will first revisit the definition of non-deterministic Büchi automaton and pro-
vide a method to encode it directly into DCR Graphs. Later we will show that Büchi
automaton is bisimilar to the encoded DCR Graph by providing a suitable proof by
using bisimulation.

3.5.1 Büchi Automaton

In this section we will revisit the definition of nondeterministic Büchi automaton and
the language accepted by it.

Definition 3.5.1. A nondeterministic Büchi-automaton is a tuple B = (S� S0� E�τ� →⊆
S × E�τ × S� F) where

1. S is the set of states ranged over by �,

2. S0 ⊆ S is the set of initial states,

3. E�τ is an alphabet (the set of names) ranged over by a,

3.5. Expressiveness of DCR Graphs 79
4. →⊆ S × E�τ × S is the transition relation, and

5. F is the set of final or accepting states.

A run for an infinite word σ = �0� �1� �2� ��� ∈ E�ω
τ is an infinite sequence of

states �0� �1� �2� ��� such that �0 ∈ S0 and ��
��−→ ��+1 for � ≥ 0. A run �0� �1� �2� ��� is

accepting if �� ∈ F for � ≥ 0 infinitely often.

Now we will define the labeled transition relation for Büchi-automaton (B) as
follows,

Definition 3.5.2. For a Büchi automaton B = (S� S0� E�τ� →⊆ S × E�τ × S� F), we
define the corresponding the corresponding labelled transition system TS(B) to be a
tuple

(�(S)� S0� →B⊆ �(S) × E�τ × �(S)� FN)

where S0 is the set of initial states in B, FN = {S � | S � ∈ �(S) ∧ S � ∩ F �= ∅} is the
set of final states and the transition relation defined by →B= {(S �� �� {�}) | ∃�� ∈
S ��(��� �� �) ∈→}

Further we define a run of the transition system �0� �1� �2� ��� ∈ E�ω
τ to be an

infinite sequence of labels of transitions S�
(��)−−→B {��+1} starting from the initial state

S0 and a run is accepting if �� ∈ FN infinitely often.

On can observe that the transitions in the labeled transition relation for Büchi
automaton TS(B) are from set of states to a singleton state (S�

(��)−−→B {��+1}), instead
of just from one state to other (��

(��)−−→B ��+1) like in any other labeled transition
system. The start state in non-deterministic Büchi automaton is not just one state,
but a set of states, and in order to cover the transitions of start state also, we have
defined the transitions in TS(B) to be from set of states to a singleton state.

Now we will define the mapping from Büchi automaton to DCR Graphs in the
definition 3.5.3. First, every state and every transition of Büchi automaton are mapped
to individual events in the corresponding DCR Graph. The events corresponding to
the states in Büchi automaton are neither enabled nor executable and they are used
to block/unblock the events corresponding to their transitions in Büchi automaton.

In order to map the accepting states of Büchi automaton to corresponding mark-
ings in DCR Graph, we add a special event NAS with a self condition and with a
initial pending response. The event NAS will always stay in the pending response
set of a marking, as it will never get executed, but by excluding/including the NAS
event, the marking can be made accepting/non-accepting.

Further, we have added all the transition events to the executed set (Ex) of initial
marking in the DCR Graph, as the transition events are the only events, which are
executable. The basic intuition behind this, is to have a constant executed set (Ex)
in a marking, so that we will get one-to-one correspondence between the states of
Büchi automaton to the markings of DCR Graph. Further we are also not interested
in the history of execution as it in no way influences the execution of transition

80 Chapter 3. Dynamic Condition Response Graphs
events, because all their condition events are only the state events, which will never
get executed.

Similarly, the response set is also constant, containing exactly one event NAS all
the time as the response relation (•→) in the DCR Graph is empty. The only change
from marking to marking is in included set (In). We will add all the transition events
to the included set of the initial marking. Further all the state events except those
are part of start state are also added to included set. Finally the event NAS will be
added if none of the start states of Büchi automaton are also final states.

Response (•→) and milestone (→�) relations are empty in the encoding, where as
the condition relation (→•) contains all blocking condition relations. All state events
and NAS event will contain a self condition relation where as all transition events
will have their corresponding state event as a condition. Finally include (→+) and
exclude (→%) relations contains mappings to include or exclude a state event or NAS
event. If a transition (e.g (s, a, s’)) in Büchi automaton leading to next state, then the
corresponding transition event (e(s,a,s’)) will exclude the state event for the leading
state (to enables the transitions at the leading state) and also include the state event
for the leaving state (to block all transitions at the leaving state). Similarly, the NAS
event will be excluded if the leading state is one of the accepting states in Büchi
automaton, on the other hand if the leading state is not one of the final states, then
it will include NAS.

Finally, we will add all the transition labels (E�τ) to the actions set and the
labeling function will contain mapping between transition label (a) and event name
(e(s, a, s’)). We will not add any labels either for a state event or the NAS event, as
they will not be executed at any time.

The formal definition of encoding Büchi automaton to a DCR Graph is given below
in def 3.5.3.

Definition 3.5.3. For a Büchi automaton B = (S� S0� E�τ� →⊆ S ×E�τ ×S� F), we de-
fine the corresponding DCR Graph to be G(B) = (E� M� →•� •→� →�� →+� →%� Act� l)
where

1. E = (E� ∪ Eτ) � {NAS} such that

• E� = {�(�) | � ∈ S} is the set of events for the states in Büchi automaton,
• Eτ = {�(�� �� ��) | (�� �� ��) ∈→} is event set for transitions in Büchi

automaton,

2. M = MB(S0) where MB : �(S) → �(G(B)) and defined as
MB(S �) = (Ex� Re� In) such that

• Ex = Eτ , Re = {NAS}

• In =
� �

Eτ ∪ E� \ {�(�) | � ∈ S �}
�

∪ {NAS} �� S � ∩ F = ∅
Eτ ∪ E� \ {�(�) | � ∈ S �} �� S � ∩ F �= ∅

3. •→= ∅ and →�= ∅

3.5. Expressiveness of DCR Graphs 81
4. →•= {(NAS� NAS)} ∪ {

�
�(�)� �(�)

�
| � ∈ S} ∪

{
�
�(�)� �(�� �� ��)

�
| (�� �� ��) ∈→}

5. →+= {
�
�(�� �� ��)� �(���)

�
| �(�� �� ��) ∈→ ∧ ��� �= ��} ∪

{
�
�(�� �� ��)� NAS)

�
| (�� �� ��) ∈→ ∧ �� �∈ F}

6. →%= {
�
�(�� �� ��)� �(��)

�
| �(�� �� ��) ∈→ ∧ � �= ��} ∪

{
�
�(�� �� ��)� NAS)

�
| (�� �� ��) ∈→ ∧ �� ∈ F}

7. Act = E�τ

8. l = {
�
�(�� �� ��)� �)

�
| �(�� �� ��) ∈→}

3.5.2 Encoding of Büchi Automaton into DCR Graphs - Example

Figure 3.12: Büchi-automaton Example

In this section, we will explain the construction of DCR Graph from the Büchi
automaton, by taking an example. Let’s take a small example of Büchi automaton
as shown in the figure 3.12. The automaton contains 4 states with one initial state
(�1) and one final state (�4) marked with green color. The automaton shown in the
example is nondeterministic, as we can observe nondeterministic transitions at states
�1 and �4. The automaton will only accepting if in a run, the final state �4 is visited
infinitely often.

The encoded DCR Graph for the Büchi automaton shown in figure 3.12 is shown
in the figure 3.13. In the construction, first we will add events (let’s call state events)
for all the states in the Büchi automaton (B) and they are named after their respective
states in the encoded DCR Graph (G(B)). For example, the state �1 in B, we will get
an event �(�1) in the G(B). All state events will have self condition relation as shown
in the figure 3.13, which make them never enabled and executable. The state events
(e.g �1) for the states which are part of start state in B, will be excluded in the initial
marking.

82 Chapter 3. Dynamic Condition Response Graphs

Figure 3.13: DCR Graphfor Büchi-automaton in figure 3.12

Similarly, all the transitions in B will a get event in G(B) (let’s call them tran-
sition events) and they are named after their respective transitions. For exam-
ple if we have a transition (�1� �� �3) in B, then in the encoded DCR Graph, we
will get an event �((�1� �� �3)). In this way, for non-deterministic transitions in B,
we will get deterministic events in G(B) with labels mapped exactly to the tran-
sitions in B. For example, we have non-deterministic transition � at state �1 in
B, which will be encoded with events �((�1� �� �3))� �((�1� �� �2)) with their labels as
l(�((�1� �� �3))) = �� l(�((�1� �� �2))) = � respectively. Further all transition events will
have their respective state events as conditions. As explained before, the state events
can not be executed and hence they act as blocker events, blocking the their transi-
tion events and only when a state is excluded in a marking, then all their transition
events will be enabled.

Further, for all the transitions that lead to one of the final states in B, the corre-
sponding transition events will exclude the NSA event, to make the resulting marking
accepting, on the other hand the transition events will include NSA event if they are
leading to a state that is not part of final state. Similarly for the transitions leading
to an another state (e.g. � at �3) in B, their respective transition event (�(�3� �� �4))

3.5. Expressiveness of DCR Graphs 83
will exclude the leading state event (�4) in order to enable the transition events at the
leading state and include the leaving state event (�3) to make the transition events
blocked at the leaving state.

Finally, we have excluded some of the un-important relations (e.g. include relation
from �(�1� �� �3) to NSA) in the figure 3.12 to make it more readable. Also, we
have used a shorthand notation for the condition relation from state events to their
transition events by using a box around transition events and making the condition
relation pointing to the box, meaning that the condition relation applies to all the
transition events inside the box.

3.5.3 Bisimulation between Büchi and DCR Graph

First we will define the relation between Büchi automaton B and its corresponding
DCR Graph G(B) as follows,

Definition 3.5.4. For a labeled transition system for Büchi automaton
TS(B) = (�(S)� S0� →B⊆ �(S)×E�τ ×�(S)� FN) where B = (S� S0� E�τ� →⊆ S×E�τ ×
S� F) and it’s the corresponding DCR Graph to be G(B) = (E� M� →•� •→� →�� →+
� →%� Act� l), we define the binary relation over TS(B) and TS(G) as � = {(�� M) |
� ∈ �(S) ∧ M = MB(�)}.

The binary relation � contains pairs of state form TS(B) and its corresponding
marking from G(B), as defined by the function in the encoding.

Proposition 3.5.1. The labeled transition system TS(B) for a Büchi automaton is
bisimilar to the labeled transition system TS(G) for corresponding DCR Graph.

Proof. For Büchi automaton B = (S� S0� E�τ� →⊆ S × E�τ × S� F), the labeled tran-
sition system (def 3.5.2) is TS(B) = (�(S)� S0� →N⊆ �(S) × E�τ × �(S)� FN).

For DCR Graph G = (E� M0� Act� →•� •→� →+� →%� →�� l), the corresponding labeled
transition system (def 3.3.10) is TS(G) = (�(G)� M� ���(G)� →) where ���(G) = E×Act
is the set of labels of the transition system, M0 is the initial marking, and →⊆
�(G)×���(G)×�(G) is the transition relation defined by M (���)−−→ M⊕G � if M �G �
and � ∈ l(�).

According to def 3.5.4, we have the binary relation � = {(�� M) | � ∈ �(S) ∧ M =
MB(�)} over TS(B) and TS(G). In order to show that TS(B) ∼ TS(G), we have to show
that

• if � �−→ �� in TS(B) then there exists in TS(G) a transition M �−→ M�

• if M �−→ M� in TS(G) then there exists in TS(B) a transition � �−→ ��

We will prove the two directions individually as follows,

84 Chapter 3. Dynamic Condition Response Graphs
(A) If � �−→ �� in TS(B) then there exists in TS(G) a transition M �−→ M�

According def 3.5.4, from the binary relation �, we have the corresponding mark-
ing M in TS(G) for the state � from TS(B).

But the state � ∈ �(S) in TS(B) is a set of states in B and hence for � �−→ �� in
TS(B), there will be a set of transitions A = {� | (�� �� ��) ∈→ ∧� ∈ �} in B.

In order to prove the equivalence we have to show that ∀� ∈ A�∃M (���)−−→ M�

in TS(G) for some event � and label �.

According to definition for encoding (def 3.5.3), for a transition � �−→ �� in B,
the corresponding event in G is �(�� �� ��).

According to def 3.3.10 for labeled transition system for DCR Graph, in order
to have a transition M �−→ M� in TS(G), we need to show that M �G �(�� �� ��) and
l(�(�� �� ��)) = �.

According to definition of labeling function in encoding (def 3.5.3), we already have
∀� ∈ A�l(�(�� �� ��)) = �, hence we only need to show ∀� ∈ A�M �G �(�� �� ��).

we can rewrite ∀� ∈ A�M �G �(�� �� ��) = ∀� ∈ ��M �G �(�� �� ��) as �(�� �� ��) is
the corresponding event for (�� �� ��) ∈→.

From the encoding definition (def 3.5.3), the marking for state (S) will be M =
MB((S)) = (Ex� Re� In) such that

• Ex = Eτ , Re = {NAS}

• In =
� �

Eτ ∪ E� \ {�(�) | � ∈ S �}
�

∪ {NAS} �� S � ∩ F = ∅
Eτ ∪ E� \ {�(�) | � ∈ S �} �� S � ∩ F �= ∅

From def 3.3.7, to show that ∀� ∈ ��M �G �(�� �� ��), we need to show that
∀� ∈ ��

�
�(�� �� ��) ∈ In

�
∧

�
→��(�� �� ��)∩In ∈ E\Re

�
∧

�
→•�(�� �� ��)∩In ∈ Ex

�

holds.

(i) ∀� ∈ ���(�� �� ��) ∈ In
Since �(�� �� ��) ∈ Eτ ⊆ In0 where In0 is the included set of initial marking
and →%�(�� �� ��) = ∅, all the events in Eτ are included in all markings.
Hence we can conclude that ∀� ∈ ���(�� �� ��) ∈ In holds.

(ii) ∀� ∈ �� →��(�� �� ��) ∩ In ∈ E \ Re
(→� = ∅) =⇒ (→��(�� �� ��) = ∅).
Hence we can conclude that ∀� ∈ �� →��(�� �� ��) ∩ In ∈ E \ Re holds.

3.5. Expressiveness of DCR Graphs 85
(iii) ∀� ∈ �� →•�(�� �� ��) ∩ In ∈ Ex

From the definition of condition relation in the encoding (def 3.5.3),
→• �(�� �� ��) = �(�), i.e the only condition events for a transition event
�(�� �� ��) is its state event �(�).

From the marking (M) for the state �, we can observe that, the events
{�(�) | � ∈ S �} not included in the included set (In). Hence

�
{�(�) | � ∈ S �} ∩ In = ∅

�
=⇒ ∀� ∈ �� →•�(�� �� ��) ∩ In = ∅.

Therefore we can conclude that ∀� ∈ �� →•�(�� �� ��) ∩ In ∈ Ex holds.

From (i), (ii) and (iii), we can conclude that ∀� ∈ ��
�
�(�� �� ��) ∈ In

�
∧

�
→�

�(�� �� ��) ∩ In ∈ E \ Re
�

∧
�

→•�(�� �� ��) ∩ In ∈ Ex
�

holds.

Therefore our proposition that If � �−→ �� in TS(B) then there exists in TS(G)
a transition M �−→ M� is valid.

(B) if M �−→ M� in TS(G) then there exists in TS(B) a transition � �−→ ��

According def 3.5.4, from the binary relation �, we have � in TS(B) from cor-
responding marking M in TS(G).

At marking M in TS(G), the transition M �−→ M� implies that there are set of
enabled transitions such that A = {� | M (���)−−→ ∧ l(�) = �} for some event � and
label �.

In order to prove the equivalence we have to show that ∀� ∈ A�∃� �−→ �� |
� ∈ � ∧ (�� �� ��) ∈→ in TS(G).

Let’s first compute set of all enabled transitions at marking M. According to
def 3.3.10 for labeled transition system for DCR Graph, if we have a transition
M �−→ M� in TS(G), it indicates that M �G � and l(�) = � for some event � and
label �.

Further, from def 3.3.7, M �G � in G for some event �, indicates that
�
� ∈

In
�

∧
�

→�� ∩ In ∈ E \ Re
�

∧
�

→•� ∩ In ∈ Ex
�
.

According to definition of encoding (def 3.5.3), the marking M = MB((S)) =
(Ex� Re� In) such that

• Ex = Eτ , Re = {NAS}

• In =
� �

Eτ ∪ E� \ {�(�) | � ∈ S �}
�

∪ {NAS} �� S � ∩ F = ∅
Eτ ∪ E� \ {�(�) | � ∈ S �} �� S � ∩ F �= ∅

86 Chapter 3. Dynamic Condition Response Graphs
From the above marking, we will compute the set of enabled events E� = {� |
M �G �} and from E�, we compute the enabled transition by taking label corre-
sponding to those events from labeling function l.

First let us say that E� = ∅ and we start filling the set E�, as we go through the
conditions for enabled event one by one as listed below.

(i) M �G � =⇒ � ∈ In
From the marking M given above, the events currently included in the In
set are

�
Eτ ∪ E� \ {�(�) | � ∈ S �}

�
∪ {NAS}. So let’s say that

E� =
�
Eτ ∪ E� \ {�(�) | � ∈ S �}

�
∪ {NAS}.

(i) M �G � =⇒
�

→�� ∩ In ∈ E \ Re
�

Since →� = ∅, it does not affect the E�, therefore it will still be
E� =

�
Eτ ∪ E� \ {�(�) | � ∈ S �}

�
∪ {NAS}.

(i) M �G � =⇒
�

→•� ∩ In ∈ Ex
�

For an enabled event, all its conditions must be in executed (Ex) set.

From the definition of condition relation in the encoding (def 3.5.3),
→•NAS = {NSA} ∧ NSA �∈ Ex =⇒ NSA �∈ E�

Similarly ∀�(�) ∈ E�� →•�(�) = {�(�)} ∧ �(�) �∈ Ex =⇒ �(�) �∈ E�.

After updating E� for the above the two results, we have E� = Eτ .

From the definition of condition relation in the encoding (def 3.5.3),
→•�(�� �� ��) = {�(�)}. The state events �(�) will never get executed as they
have self condition (→• �(�) = {�(�)}), but the only way they can unblock
the transition events is by not included in the marking.

From the included set In and executed set Ex in marking M, the set of
transition events which are not enabled because their condition events are
not in executed set, but included in the marking, ∀�(�� �� ��) ∈ Eτ � →•
�(�� �� ��) ∩ In �⊆ Ex = Eτ \ {�(�� �� ��) | � ∈ �}.
In order to get the actual enabled events at marking M, we have to remove
all these not enabled transition events from the E�,

E� = Eτ \
�
Eτ \ {�(�� �� ��) | � ∈ �}

�
.

E� = {�(�� �� ��) | � ∈ �}.

Finally the set of enabled events at M is {�(�� �� ��) | � ∈ �} and we have labels
for each of these events in the labeling function.

Hence at marking M, we have ∀� ∈ ��M �G �(�� �� ��) ∧ l(�(�� �� ��)) = �.

3.5. Expressiveness of DCR Graphs 87
From the encoding definition (def 3.5.3), if we have a transition � in B such
that {� | (�� �� ��) ∈→}, then we have a transition event �(�� �� ��) with its label
l(�(�� �� ��)) = � in G(B).

Therefore ∀� ∈ ��
�
M �G �(�� �� ��) ∧ l(�(�� �� ��))

�
= � =⇒ ∃�{� | (�� �� ��) ∈→

∧ � ∈ �}.

Hence we can conclude that if M �−→ M� in TS(G) then there exists in TS(B)
a transition � �−→ �� holds.

Finally, since we have proved the proposition in both directions, we can conclude
that TS(G) and TS(B) are bisimilar, that means TS(G) ∼ TS(B).

Theorem 3.5.1. A Büchi automaton B = (S� S0� E�τ� →⊆ S ×E�τ ×S� F) and its cor-
responding DCR Graph G(B) = (E� M� →•� •→� →�� →+� →%� Act� l). will have same
runs and accepting runs.

Proof. In the proposition 3.5.1, we have proved that the labeled transition system
(TS(B)) for Büchi automaton B is bisimilar to labeled transition system (TS(G)) for its
corresponding DCR Graph G(B).

Since TS(G) ∼ TS(B), we have same transitions and choices at every corresponding
state in B and marking in G(B), therefore we can conclude that both B and G(B) will
have same runs.

Then, we have to prove that both B and G(B) will have same accepting runs.

To prove this, we have to show that accepting runs are same in both directions,
and the proof is divided into 2 parts follows,

(A) If a run is accepting in B then it is also accepting in G(B).

From definition for Büchi automaton (def 3.5.1), a run �0� �1� �2� ��� is accepting if
�� ∈ F for � ≥ 0 infinitely often.

In the above run for B, let’s us say that, ��
�−→ ��+1 is the transition that is

visiting a state in F , that means ��+1 ∈ F .

Since we have the same runs, for the ��
�−→ ��+1 in B, we have a correspond-

ing marking in G(B) such that M�
(�(�������+1)��)−−−−−−−−→ M�+1.

From the definition of exclude relation in the encoding (def 3.5.3), we have
∀�(�� �� ��) ∈→ ∧ �� ∈ F � �(�� �� ��)→% = {NAS}.

88 Chapter 3. Dynamic Condition Response Graphs
Hence we have �(��� �� ��+1)→% = {NAS} as ��+1 ∈ F .

When M�
(�(�������+1)��)−−−−−−−−→ M�+1, it will exclude {NAS} from the marking M�+1.

From the definition of the encoding (def 3.5.3), we have •→= ∅ and {NAS}
is the only event with pending response.

Therefore in the marking M�+1, the In ∩ Re = ∅, making the marking M�+1 ac-
cepting.

For any transition in B that is visiting the one of the final states, the correspond-
ing marking in G(B) will be accepting as we have exclude relation ∀�(�� �� ��) ∈→
∧ �� ∈ F � �(�� �� ��)→% = {NAS}.

Since the run in B is accepting, it will visit one of the final states infinitely
often, thereby the marking in G(B) will be visiting the state where there are no
included pending responses, in other words there is no pending response event
in G(B) that stays for ever without being executed or excluded. Therefore the run
in G(B) is accepting.

Therefore we can conclude that If a run is accepting in B then it is also ac-
cepting in G(B).

(B) If a run is accepting in G(B) then it is also accepting in B.
According to def 3.3.9, a run is DCR Graph is accepting if ∀� ∈ [�]�

�
∀� ∈ In� ∩

Re��∃� ≥ ���� = � ∨ � �∈ In�
�)

�
, where M� = (Ex�� In�� Re�) and M�

� = (Ex�
� � In�

� � Re�
�).

Informally a run in G(B) is accepting if there is no pending response that stays
for ever without being executed or excluded.

From the definition of the encoding (def 3.5.3), in G(B), we have •→= ∅ and
{NAS} is the only event with pending response.

Therefore an accepting run in G(B) is the one in which the event {NAS} is
either executed or excluded infinitely often.

Since {NAS} can not be executed at all due to it’s self condition (→• NAS =
{NAS}), the only way a run is accepting in G(B) is by excluding the event NAS
infinitely often.

From the definition of exclude relation in the encoding (def 3.5.3), the set of
events that can exclude the the event NAS is
→%NAS = {�(�� �� ��) | (�� �� ��) ∈→ ∧ �� ∈ F}

3.6. Summary 89
The transition event �(�� �� ��) in G(B) exactly corresponds to a transition (�� �� ��)
in B and further state �� is visiting one of the final states in B.

Since run in G(B) is accepting, so the event NAS will be excluded infinitely often
by executing one of the transition event in {�(�� �� ��) | (�� �� ��) ∈→ ∧ �� ∈ F},
which corresponds to visiting one of the final states infinitely often in B, which
satisfies the condition for a run to be accepting in B.

Therefore, we can conclude that, If a run is accepting in G(B) then it is also
accepting in B.

Since we have the theorem in both directions, we can conclude that both B and G(B)
will have same runs and accepting runs.

3.5.4 Conclusion

The nondeterministic Büchi-automaton is a kind of automaton that is suited for all
accepting ω-regular languages, as it has acceptor for infinite words. Moreover, the
equivalence between nondeterministic Büchi-automaton and ω-regular languages
was proved by McNaughton in 1966 [McNaughton 1966] and therefore nondetermin-
istic Büchi-automaton is as expressive as ω-regular languages. Hence nondetermin-
istic Büchi-automaton is considered as alternative formalism to describe ω-regular
languages.

In this section, we have proved the equivalence between theDCR Graphs and
nondeterministic Büchi-automaton by providing a straight forward construction from
nondeterministic Büchi-automaton to a DCR Graph. Moreover, the construction is lin-
ear in the sense that the DCR Graph contains number of events equal to total number
of transitions plus states and additionally one more event for toggling the accept-
ing condition. Therefore, we conclude that the DCR Graphs is expressive enough to
describe ω-regular languages.

3.6 Summary

In this chapter, we have introduced DCR Graphs as a formal model for for a new
declarative, event-based workflow process model inspired by the workflow language
employed by our industrial partner [Mukkamala et al. 2008]. We have demonstrated
the use and flexibility of the model on a small example taken from a field study on
Danish hospitals [Lyng et al. 2008] and proposed a graphical notation for presenting
both the process specification and their run-time state.

The model was presented as a sequence of generalizations of the classical model
for concurrency of labeled event structures [Winskel 1986]. The first generalization
introduced a notion of progress to event structures by replacing the usual causal
order by two dual relations, a condition relation →• expressing for each event which

90 Chapter 3. Dynamic Condition Response Graphs
events it has as preconditions and a response relation •→ expressing for each event
which events that must happen (or be ruled out) after it has happened. We further
demonstrated that the resulting model, named condition response event structures
can express the standard notion of weak concurrency fairness.

The next generalization is to allow for finite representations of infinite behaviours
by allowing multiple execution, and dynamic inclusion and exclusion of events, re-
sulting in the model of dynamic condition response graphs. Finally, we extended the
model to allow distribution of events via roles and presented a graphical notation
inspired by related work by van der Aalst et al. [van der Aalst & Pesic 2006a, van der
Aalst et al. 2009], but extended to include information about the run-time state (e.g.
markings).

We have shown that all generalizations conservatively contain the previous model.
Moreover, we provide a mapping from dynamic condition response graphs to Büchi-
automata characterising the acceptance condition for finite and infinite runs, by in-
troducing a special silent event e.g. τ-event.

One key advantage of the DCR Graphs compared to the related work explored
in [van der Aalst & Pesic 2006a, van der Aalst et al. 2009, Davulcu et al. 1998, Cicekli
& Cicekli 2006] is that the latter logics are more complex to visualize and understand
by people not trained in logic. Another advantage, illustrated in the given mapping
to Büchi-automata and our graphical visualization of the run time state, is that the
execution of dynamic condition response graphs can be based on a relatively sim-
ple information about the run-time state, which can also be visualized directly as
annotations (marking) on the graph.

Finally, we have proved the equivalence between DCR Graphs and nondetermin-
istic Büchi-automaton, there by proved that the DCR Graphs expressive enough to
describe ω-regular languages.

In the next chapter, we will look into the extensions for DCR Graphs such as
nested sub structures for modeling hierarchy, sub processes for modeling of multiple
instances and also extend DCR Graphs to support data as a shared global store of
variables.

Chapter 4Dynamic Condition ResponseGraphs - Extensions
In the previous chapter (chapter 3), we have introduced the basic model and core
primitives of DCR Graphs. In this chapter, we will describe the extensions to the
DCR Graphs, which will make the formal model more applicable to various real world
scenarios and case studies. The first and foremost extension to the DCR Graphs
is nested subgraphs which is a standard in most state-of-art modeling notations to
model hierarchy. A case study from the Case Management domain will be introduced
in section. 4.1.3 and we will demonstrate how we have applied nested DCR Graphs
in practice within a project that our industrial partner Exformatics carried out for one
of their customers.

Further, in the section 4.2, we will introduce an extension sub-processes to model
replicated behavior in the DCR Graphs and then extend it to the nested DCR Graphs.
Finally, we will introduce an important extension adding support for data to the
DCR Graphs in the section 4.3.

We employ the following notations in this chapter.Notation: For a set A we write �(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write →ξ and ξ → for the set {� ∈ A | (∃�� ∈
ξ | � → ��)} and the set {� ∈ A | (∃�� ∈ ξ | �� → �)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number � we write [�] for the set
{1� 2� � � � � �}.

4.1 Nested Dynamic Condition Response Graphs

In this section, we describe how to extend the model to allow for nested sub-graphs.
Initially, the extension was guided by a second case study, in which we have applied
the model of Nested Dynamic Condition Response Graphs (Nested DCR Graphs)
in the design phase of the development of a distributed, inter-organizational case
management system.

In the next section (sec 4.1.1), we will introduce the Nested DCR Graphs with
the help of oncology healthcare workflow, which was previously identified dur-
ing a field study at Danish hospitals [Lyng et al. 2008]. The formal semantics of
Nested DCR Graphs will be given in the sec 4.1.2 and finally in sec 4.1.3, we will
describe the case management case study which has motivated the extension of
Nested DCR Graphs.

92 Chapter 4. Dynamic Condition Response Graphs - Extensions
4.1.1 Nested DCR Graphs by Healthcare Workflow Example

In Fig. 4.1, we show the graphical representation of the Nested DCR Graphs formal-
izing a variant of the oncology workflow studied in [Lyng et al. 2008].

As explained in the previous chapter, the boxes denote activities (also referred
to as events in many places). Administer medicine is a nested activity having sub
activities give medicine and trust. Give medicine is an atomic activity, i.e. it has no
sub activities and on the other hand, Trust is again a nested activity having sub
activities sign nurse 1 and sign nurse 2. The activity medicine preparation is a nested
activity having seven sub activities dealing with the preparation of medicine, where
as manage prescription is a nested activity with two sub activities. An activity may
be either included or excluded, the latter activeties are drawn as a dashed box as
e.g. the edit and cancel activities. Finally, treatment is a nested activity containing
all other activities as sub activities.

Figure 4.1: Oncology Workflow as a nested DCR Graph

A run of the workflow consists of a (possibly infinite) sequence of executions of
atomic activities. (A nested activity is considered executed when all its sub activities

4.1. Nested Dynamic Condition Response Graphs 93
are executed). An activity can be executed any number of times during a run, as long
as the activity is included and the constraints for its execution are satisfied, in which
case we say the activity is enabled.

As explained in the previous chapter (chapter 3), the constraints and dynamic
exclusion and inclusion are expressed as five different core relations between activi-
ties represented as arrows in the figure above: The condition relation, the response
relation, the milestone relation, the include relation, and the exclude relation.

The condition relation is represented by an orange arrow with a bullet at the
arrow head, e.g. the condition relation from the activity sign doctor to the activity
don’t trust prescription(N) means that sign doctor must have been executed at least
once before the activity don’t trust prescription(N) can be executed.

The response relation is represented by a blue arrow with a bullet at its source.
E.g. the response relation from the activity prescribe medicine to the activity give
medicine means that the latter must be executed (at some point of time) after (any
execution of) the activity prescribe medicine. We say that a workflow is in a completed
state if all such response constraints have been fulfilled (or the required response ac-
tivity is excluded). However, note that a workflow may be continued from a completed
state and change to a non-completed state if an activity is executed that requires
another activity as a response or includes an activity which has not been executed
since it was last required as a response.

The third core relation used in the example is the milestone relation represented
as a dark red arrow with a diamond at the arrow head. The milestone relation
was introduced in [Hildebrandt et al. 2011c] jointly with the ability to nest activities.
A relation to and/or from a nested activity simply unfolds to relations between all
sub activities. A milestone relation from a nested activity to another activity then
in particular means that the entire nested activity must be in a completed state
before that activity can be executed. E.g. medicine preparation is a milestone for the
activity administer medicine, which means that none of the sub activities of administer
medicine can be carried out if any one of the sub activities of medicine preparation
is included and has not been executed since it was required as a response.

Further, two activities can be related by any combination of these relations. In
the graphical notation we have employed some shorthands, e.g. indicating the com-
bination of a condition and a response relation by and arrow with a bullet in both
ends.

Finally, DCR Graphs allow two relations for dynamic exclusion and dynamic
inclusion of activities represented as a green arrow with a plus at the arrow head
and a red arrow with a percentage at the arrow head respectively. The exclusion
relation is used in the example between the cancel activity and the treatment activity.
Since all other activities in the workflow are sub activities of the treatment activity,
then all activities are excluded if the cancel activity is executed. The inclusion relation
is used between the prescribe medicine activity and the manage prescription activity,
so when prescribe medicine is executed, the manage prescription will be included.

The run-time state of a nested DCR Graph can be formally represented as a triple
(Ex� Re� In) of sets of atomic activities (referred to as the marking of the graph). The

94 Chapter 4. Dynamic Condition Response Graphs - Extensions
set Ex is the set of atomic activities that have been executed at least once during
the run. The set R� is the set of atomic activities that, if included, are required to be
executed at least one more time in the future as the result of a response constraint
(i.e. they are pending responses). Finally, the set I� denotes the currently included
activities. The set Ex thus may be regarded as a set of completed activities, the set
Re as the set of activities on the to-do list and the set In as the activities that are
currently relevant for the workflow.

Note that an activity may be completed once and still be on the to-do list, which
simply means that it must be executed (completed) again. This makes it very simple
to model the situation where an activity needs to be (re)considered as a response
to the execution of an activity. In the oncology example this is e.g. the case for the
response relation between the don’t trust prescription(N) activity (representing that a
nurse reports that he/she doesn’t trust the prescription) and the sign doctor activity.
The effect is that the doctor is asked to reconsider her signature on the prescription.
In doing that the doctor may or may not decide to change the prescription, i.e. execute
prescribe medicine again.

We indicate the marking graphically by adding a check mark to every atomic
activity that has been executed (i.e. is included in the set Ex of the marking), an
exclamation mark to every atomic activity which, if included, is required to be executed
at least once more in the future (i.e. is included in the set Re), and making a box
dashed if the activity is not included (i.e. is not included in the set In of the marking).
In Fig. 4.2 we have shown an example marking where prescribe medicine has been
executed. This has caused manage prescription and its sub activities edit and cancel
to be included, and sign doctor and give medicine to be required as responses, i.e the
two activities are included in the set Re of the marking (on the to-do list).

As described in the previous chapter (sec 3.3.2), an activity can be executed if it
is enabled. Sign doctor is enabled for execution in the example marking, since its
only condition (prescribe medicine) has been executed and it has no milestones. Give
medicine on the other hand is not enabled since it has the (nested) activity trust as
condition, which means that all sub activities of trust (sign nurse 1 and sign nurse 2)
must be executed before give medicine is enabled. Also, both give medicine and trust
are sub activities of administer medicine which further has sign doctor as condition
and milestone, and medicine preparation as milestone. The condition relation from
sign doctor means that the prescription must be signed before the medicine can be
administered. The milestone relations means that the medicine can not be given as
long as sign doctor or any of the sub activities of medicine preparation is on the to-do
list (i.e. in the set Re of pending responses).

With the informal introduction of Nested DCR Graphs using the healthcare work-
flow, now we will provide a formal definition of Nested DCR Graphs in the next
section.

4.1. Nested Dynamic Condition Response Graphs 95

Figure 4.2: Oncology Workflow as a nested DCR Graph with runtime state

4.1.2 Nested DCR Graphs - Formal Semantics

Let us recall the formal definitions of DCR Graphs (sec 3.3.6) and distributed DCR Graphs(sec 3.3.6)
from the chapter 3. First we have defined DCR Graphs in definition 3.3.6 and then
the model is extended by adding roles and principals to further define distributed
DCR Graphs in definition 3.3.6. In the later versions of formalization of DCR Graphs,
we have further abstracted away from roles and principals and defined a more gen-
eral version of DCR Graphs, where labels of events were sets of triples consisting of
an action, a role and a principal.

Hence we first give a more general definition of a DCR Graph and then formally
define nested dynamic condition response graph as follows.Definition 4.1.1. A Dynamic Condition Response Graph (DCR Graph) G is a tuple (E,
M, →•, •→, →�, →+,→%, L,l), where

(i) E is the set of events (or activities),

96 Chapter 4. Dynamic Condition Response Graphs - Extensions
(ii) M = (Ex� Re� In) ∈ �(G) is the marking, for �(G) =��� �(E) × �(E) × �(E),

(iii) →•⊆ E × E is the condition relation,

(iv) •→⊆ E × E is the response relation,

(v) →�⊆ E × E is the milestone relation,

(vi) →+� →%⊆ E×E is the dynamic include relation and exclude relation, satisfying
that ∀� ∈ E�� →+ ∩� →%= ∅,

(vii) L is the set of labels,

(viii) l : E → �(L) is a labeling function mapping events to sets of labels.

Note that, now each event is mapped to the set of labels (viii), which can consist
of name of the event and a role which defines who can execute that event. In our
implementation every event can be assigned any number of roles and every user of
the system can have multiple roles. A user can then execute an event if she has at
least one role that is assigned to the event.

Definition 4.1.2. A Nested Dynamic Condition Response Graphs (Nested DCR Graph)
G is a tuple (E�⇤� M� →•� •→� →�� →+� →%� L� l), where

(i) (E� M� →•� •→� →�� →+� →%� L� l) is a DCR Graph,

(ii) ⇤ : E � E is a partial function mapping an event to its super-event (if defined),

(iii) M ∈ �(atoms(E)) × �(atoms(E)) × �(atoms(E)), where atoms(E) = E\{� ∈ E |
∃�� ∈ E� ⇤ (��) = �} is the set of atomic events.

We write �⇤�� if �� = ⇤� (�) for 0 < � and write �⌅�� if �⇤�� or � = ��, and �⇥��

if �� ⇤ � or � = ��. We require that the resulting relation, ⌅ ⊂ E × E , referred to as
the nesting relation, is a well founded partial order. We also require that the nesting
relation is consistent with respect to dynamic inclusion/exclusion in the following
sense: If � ⇤ �� or �� ⇤ � then � →+ ∩�� →%= ∅.

We already introduced the graphical notation for Nested DCR Graphs by ex-
ample in the previous section. The complete formal specification of the example is
shown in the listing 4.1. Let us use abbreviations for the event names in the formal
specification of example: treatment (treat), manage prescription (man pres), medicine
preparation (med prep), administer medicine (adm med), trust (trust), edit (edit), cancel
(canc), prescribe medicine (pres med), sign doctor (sn doc), give medicine (gm), don’t
trust prescription(N) (dt pres N), sign nurse 1 (sn N1), sign nurse 2 (sn N2), accept
prescription (acc pres), don’t trust prescription(CP) (dt pres CP), make preparation (mk
prep), sign PA (sn PA), sign CP (sn CP), don’t trust preparation(CP) (dt prep CP), don’t
trust preparation(N) (dt prep N).

4.1. Nested Dynamic Condition Response Graphs 97
Listing 4.1: Formal specification of Healthcare Workflow in Nested DCR Graphs.

A Nested DCR Graph G = (E�⇤� M� →•� •→� →�� ±� L� l) where

E = {treat� man pres� med prep� adm med� trust� edit� canc� pres med� sn doc� dt pres N�
gm� sn N1� sn N2� acc pres� dt pres CP� mk prep� sn PA� sn CP� dt prep CP� dt prep N}

⇤ = {(man pres� treat)� (med prep� treat)� (adm med� treat)� (trust� treat)�
(pres med� treat)� (sn doc� treat)� (dt pres N� treat)� (edit� man pres)�
(canc� man pres)� (acc pres� med prep)� (dt pres CP� med prep)�
(mk prep� med prep)� (sn PA� med prep)� (sn CP� med prep)�
(dt prep CP� med prep)� (dt prep N� med prep)� (gm� adm med)�
(trust� adm med)� (sn N1� trust)� (sn N2� trust)}

atoms(E) = {edit� canc� pres med� sn doc� dt pres N� gm� sn N1� sn N2� acc pres�
dt pres CP� mk prep� sn PA� sn CP� dt prep CP� dt prep N}

M = (∅� ∅� E \ {man pres� edit� canc})

→•= {(pres med� sn doc)� (sn doc� med prep)� (sn doc� adm med)� (sn doc� dt pres N)�
(acc pres� mk prep)� (mk prep� sn PA)� (sn PA� sn CP)� (sn PA� dt prep CP)�
(sn CP� dt prep N)� (trust� gm)}

•→= {(edit� sn doc)� (pres med� gm)� (pres med� sn doc)� (sn doc� acc pres)�
(dt pres N� sn doc)� (dt pres CP� sn doc)� (acc pres� mk prep)� (mk prep� sn PA)�
(mk prep� sn CP)� (dt prep CP� sn PA)� (dt prep N� sn CP)� (sn CP� trust)}

→�= {(sn doc� med prep)� (sn doc� adm med)� (acc pres� mk prep)� (mk prep� sn PA)�
(sn PA� sn CP)� (med prep� adm med)}

→+= {(pres med� man pres)}

→%= {(pres med� pres med)� (canc� treat)}

L = {(edit� D)� (canc� D)� (pres med� D)� (sn doc� D)} ∪
{(dt pres N� N)� (gm� N)� (dt prep N� N)� (sn N1� N1)� (sn N2� N2)} ∪
{(acc pres� CP)� (dt pres CP� CP)� (sn CP� CP)� (dt prep CP� CP)} ∪
{(mk prep� PA)� (sn PA� PA)}

l = {(edit� (edit� D))� (canc� (canc� D))� (pres med� (pres med� D))� (sn doc� (sn doc� D))
(dt pres N� (dt pres N� N))� (gm� (gm� N))� (dt prep N� (dt prep N� N))� (sn N1�
(sn N1� (sn N1� N1))� (sn N2� (sn N2� N2))� (acc pres� (acc pres� CP))�
(dt pres CP� (dt pres CP� CP))� (sn CP� (sn CP� CP))� (dt prep CP� (dt prep CP� CP))�
(mk prep� (mk prep� PA))� (sn PA� (sn PA� PA))}

The events are all boxes, e.g. E = {treat� man pres� med prep� ���}� the nesting
relation captures the inclusion of boxes, e.g. ⇤(�) = adm med, if � ∈ {gm� trust} and
⇤(�) = trust, if � ∈ {sn N1� sn N2} and so forth. The initial marking is the triple M =
(∅� ∅� E\{man pres� edit� canc}), meaning no events have been executed, no events are
initially required as responses and all events except the events {man pres� edit� canc}
are included. We take labels as pairs of action names and roles, i.e. the set of labels

98 Chapter 4. Dynamic Condition Response Graphs - Extensions
L includes e.g. the pairs (edit� D), (canc� D), (gm� N), and (sn PA� PA). Super events
with no role assigned such as med prep are assigned the empty set of labels.

To define the execution semantics for Nested DCR Graphs, we first define how to
flatten a nested graph to the simpler DCR Graph. Essentially, all relations to and/or
from nested events are extended to sub events, and then only the atomic events are
preserved.Definition 4.1.3. For a Nested DCR Graph G = (E�⇤� M� →•� •→� →�� →+� →%� L� l)
define the underlying flat Dynamic Condition Response Graph as

G� = (atoms(E)� M� →•�� •→�� →��� →+�� →%�� L� l)

where ���� = ⌅���⇥ for some relation ��� ∈ {→•� •→� →�� →+� →%}.

It is easy to see from the definition that the underlying DCR Graph has at most
as many events as the nested graph and that the size of the relations may increase
by an order of �2 where � is the number of atomic events.

The listing 4.2 shows the flattened DCR Graph for the healthcare workflow ob-
tained by flattening the Nested DCR Graph (listing 4.1) according to the defini-
tion 4.1.3.

Listing 4.2: Flatten DCR Graph for Healthcare Workflow from listing 4.1.

The underlying flat DCR graph for nested graph G in the listing 4.1
G�

� = (atoms(E)� M� →•�� •→�� →��� →+�� →%�� L� l) where

atoms(E)� M� L� l are same as in listing 4.1

→•� =→• ∪ {(sn doc� acc pres)� (sn doc� dt pres CP)� (sn doc� mk prep)� (sn doc� sn PA)�
(sn doc� sn CP)� (sn doc� dt prep CP)� (sn doc� dt prep N)� (sn doc� gm)�
(sn doc� sn N1)� (sn doc� sn N2)� (sn N1� gm)� (sn N2� gm)}

\{(sn doc� med prep)� (sn doc� adm med)� (trust� gm)}

•→� =
�

•→ ∪ {(sn CP� sn N1)� (sn CP� sn N1)}
�

\ {(sn CP� trust)}

→�� =
�

→� ∪
�

{sn doc} × {acc pres� dt pres CP� mk prep� sn PA� sn CP� dt prep CP�
dt prep N}

�
∪

�
{sn doc} × {gm� sn N1� sn N2}

�
∪

�
{acc pres� dt pres CP�

mk prep� sn PA� sn CP� dt prep CP� dt prep N} × {gm� sn N1� sn N2}
��

\{(sn doc� med prep)� (sn doc� adm med)� (med prep� adm med)}

→+� =
�

→+ ∪{(pres med� edit)� (pres med� canc)}
�

\ {(pres med� man pres)}

→%� =
�

→% ∪
�

{canc} × atoms(E)
��

\ {(canc� treat)}

Before defining when an event is enabled in a Nested Dynamic Condition Re-
sponse Graphs, let us recall the definition of an enabled event in a DCR Graph from
definition 3.3.7. It says that an event � of a DCR Graph is enabled when it is included
in current marking (� ∈ In), all the included events that are conditions for it are in the
set of executed events (i.e. (In∩ →•�) ⊆ Ex) and none of the included events that are
milestones for it are in the set of pending response events (i.e. (In∩ →��) ⊆ E\Re).

4.1. Nested Dynamic Condition Response Graphs 99
Further, also recall the definition 3.3.8 from the previous chapter, which defines

the change of the marking in a DCR Graph when an enabled event is executed: First
the event is added to the set of executed events and removed from the set of pending
responses. Then all events that are a response to the event are added to the set
of pending responses. Note that if an event is a response to itself, it will remain in
the set of pending responses after execution. Similarly, the included events set will
updated by adding all the events that are included by the event and by removing all
the events that are excluded by the event.

We now define the semantics for Nested DCR Graph by using the corresponding
flat graph about when an event is enabled and the result of executing an event in a
Nested DCR Graph in the definition 4.1.4.

Definition 4.1.4. For a Nested Dynamic Condition Response Graphs G = (E�⇤� M� →•
� •→� →�� →+� →%� L� l), where M = (Ex� Re� In) we define that � ∈ atoms(E) is en-
abled, written M � G�, if M �G� �. Similarly, the result of executing M ⊕G � same as
executing the event in flattened graph and it is defined as: M⊕G� � = (Ex� Re� In)⊕G� �.

As an example, in the intial marking M = (∅� ∅� E \ {man pres� edit� canc}) we
have that G � pres med, i.e. the event prescribe medicine is enabled. After execut-
ing pres med the new marking M� = M ⊕G pres med = ({pres med}� {sn doc� gm}�
E\{pres med}). That is, pres med is added to the set of executed events, and sn doc
and gm are added to the set of pending responses, because pres med •→ sn doc
and pres med •→ gm. The event pres med is removed from the set of included
events because pres med →% pres med. The events {man pres� edit� canc} are included
since pres med →+ man pres, and the inclusion relation is "flattened" to include also
pres med →+ edit and pres med →+ canc.

From the definition of enabling and execution above we can construct a labelled
transition semantics for a nested DCR Graphs, with acceptance conditions for finite
and infinite computations.

Definition 4.1.5. For a nested dynamic condition response graph G = (E�⇤� M� →•
� •→� →�� →+� →%� L� l) we define the corresponding labelled transition system TS(G)
to be the tuple

(�(G)� M� ���(G)� →)

where ���(G) = atoms(E) × L is the set of labels of the transition system, M is the
initial marking, and →⊆ �(G) × ���(G) × �(G) is the transition relation defined by
M (���)−−→ M ⊕G� � if M �G� � and � ∈ l(�).

We define a run �0� �1� � � � of the transition system to be a sequence of labels of
a sequence of transitions M�

(�����)−−−→ M�+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that ∀� ≥ 0� � ∈ In� ∩ Re��∃� ≥ ��((� = �� ∨ � �∈ In�+1)). In words, a run
is accepting/completed if no required response event is continuously included and
pending without it happens or become excluded.

100 Chapter 4. Dynamic Condition Response Graphs - Extensions
4.1.3 Case Study: Case Management Example In Nested DCR Graphs

In this section we demonstrate how we have applied DCR Graphs in practice within a
project that our industrial partner Exformatics carried out for one of their customers.
In the process, we have applied DCR Graphs in meetings with Exformatics and the
customer to capture the requirements in a declarative way, accompanying the usual
UML sequence diagrams and prototype mock-ups. Sequence diagrams typically only
describe examples of runs, and even if they are extended with loops and conditional
flows they do not capture the constraints explicitly.

The customer of the system is Landsorganisationen i Danmark (LO), which is the
overarching organization for most of the trade unions in Denmark. Their counterpart
is Dansk Arbejdsgiverforening (DA), which is an overarching organization for most of
the Danish employers organizations.

At the top level, the workflow to be supported is that a case worker at the trade
union must be able to create a case, e.g. triggered by a complaint by a member of the
trade union against her employer. This must be followed up by a meeting arranged
by LO and subsequently held between case workers at the trade union, LO and DA.
After being created, the case can at any time be managed, e.g. adding or retrieving
documents, by case workers at any of the organizations.

Fig. 4.3 shows the graphical representation of a simple DCR Graph capturing
these top level requirements of our case study.

Figure 4.3: Top level requirements of case management as a DCR Graph

Four top-level events were identified, shown as boxes in the graph labelled Create
case, Manage case, Arrange meeting and Hold meeting.

For the top-level events we identified the following requirements:

1. A case is created by a union case worker, and only once.

2. The case can be managed at the union, LO and DA after it has been created.

3. After a case is created, LO can and must arrange a meeting between the union
case worker, the LO case worker and the DA case worker.

4. After a meeting is arranged it must be held (organized by LO).

4.1. Nested Dynamic Condition Response Graphs 101
The requirements translate to the following DCR Graph role assignments (shown

as "ears" on the event boxes) and relations shown as different types of arrows between
the events in Fig. 4.3:

1. Create case has assigned role U and excludes itself.

2. Create case is a condition for Manage case, which has assigned role U, LO and
DA.

3. Create case has Arrange meeting as response, which has assigned role LO.

4. Arrange meeting has Create case as a condition and Hold meeting as response,
which has assigned role LO.

For example, the U on Create case indicates that only a case worker at the trade
union (U) can create a case, and the U, LO, DA on Manage case indicate that both
the trade union, LO and DA can manage the case.

The arrow Create case→•Manage case denotes that Manage case has Create case
as a (pre) condition. This simply means that Create case must have happened before
Manage case can happen. Dually, Arrange meeting has Hold meeting as response,
denoted by the arrow Arrange meeting•→Hold meeting This means that Hold meeting
must eventually happen after Arrange meeting happens. Finally, the arrow Create
case →%Create case denotes that the event Create case excludes itself.

In the subsequent meetings, we came to the following additional requirements:

1. (a) To create a case, the case worker should enter meta-data on the case,
inform about when he/she is available for participating in a meeting and
then submit the case.

(b) When a case is submitted it may get a local id at the union, but it should
also subsequently be assigned a case id in LO.

(c) When a case is submitted, LO should eventually propose dates.

2. (a) Only after LO has assigned its case id it is possible to manage the case
and for LO to propose dates.

(b) Manage case consists of three possible activities (in any order): editing
case meta data, upload documents and download documents. All activities
can be performed by LO and DA. Upload and download documents can
also be performed by the Union.

3. (a) The meeting should be arranged in agreement between LO and DA: LO
should always propose dates first - and then DA should accept, but can
also propose new dates. If DA proposes new dates LO should accept, but
can also again propose new dates. This could in principle go on forever.

(b) The union can always update information about when they are available
and edit the metadata of the case.

102 Chapter 4. Dynamic Condition Response Graphs - Extensions
4. (a) No meeting can be held while LO and DA are negotiating on a meeting

date. Once a date has been agreed upon a meeting should eventually be
held.

These requirements led to the extension of the model allowing nested events as
formalized in the previous section (sec 4.1.2).

The requirements could then be described by first adding the following additional
events to the graph: A new super event Edit (E) which has the sub events: Metadata
(E-M) and Dates available (E-D) and is itself a sub event to Create case (CC). The
Create case (CC) event has two sub events: Cc (SC) and Assign case Id (ACI). The
Manage case (MC) event has two sub events: Edit metadata (EM) and Document (D),
which in turn has two sub events: Upload (D-U) and Download (D-D). The Arrange
meeting (AM) event has four sub events: Propose dates-LO (PLO), Propose dates-DA
(PDA), Accept LO (ALO) and Accept DA (ADA). The Hold meeting (HM) event remains
an atomic top-level event.

Subsequently, the relations was adapted to the following (Nested) DCR Graph
relations, as shown in Fig 4.4:

Figure 4.4: Case Handling Process

1. Edit is a condition to Cc and is assigned role U.

2. Within the Create case superevent:

4.1. Nested Dynamic Condition Response Graphs 103
(a) Cc is a condition to Assign case Id and also requires it as a response.
(b) Assign case Id is a condition for Manage case (and therefore also all it’s

sub events).
(c) Assign case Id is now the condition for Propose dates-LO and Cc requires

it as a response.

3. Within the Arrange meeting superevent:

(a) Arrange meeting still has Hold meeting as response, but is now also re-
quired as a milestone for Hold meeting

(b) Propose dates-LO is a condition for Propose dates-DA

(c) Propose dates-LO includes Accept DA and requires it as a response
(d) Propose dates-DA includes Accept LO and requires it as a response
(e) Accept LO excludes itself and Accept DA

(f) Accept DA excludes itself and Accept LO

4. Within the Manage case superevent:

(a) Edit metadata has roles LO and DA assigned to it.
(b) Upload and Download have been grouped under a superevent Document

with roles U, LO and DA assigned to it.
(c) Upload is a condition for Download.

In Fig. 4.5, 4.6, 4.7, we have illustrated how the execution state of the case-handling
process may be visualized using the runtime notation of the DCR Graphs.

The graph in the figure. 4.5 shows the state after a run where the union started
by creating a case: they edited meta-data, indicated the dates they were available
and submitted. When LO received the case they assigned their own case ID to it.
Some time later LO proposed possible dates for a meeting to DA. DA did not agree
with these dates and responded by proposing some of their own. In the graph both
Accept LO and Accept DA are included and have a pending response because both
LO and DA have proposed dates. Because of these pending responses Hold meeting
is disabled. Because no files have been uploaded to the document yet, Download is
also disabled.

The graph in the figure. 4.6 shows the runtime state after the union has uploaded
an agenda for the meetings. Note that, since the union has uploaded a file to the
case, Download is now enabled. But at the same time, Accept LO and Accept DA
still remain the same as the previous graph, as the proposed dates have not been
accepted yet by either LO or DA.

Figure 4.7 shows the graph representing the state after LO has accepted one of
the dates proposed by DA. Note that both Accept LO and Accept DA are excluded
due to the mutual exclude relation between them. Even though there is a pending
response on Accept DA, it is not considered relevant as it is excluded and Hold meeting

104 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.5: Case Handling Process Runtime

has become pending because of the response relation. Continuing by executing Hold
meeting as LO will cause the graph to reach an accepting state, as there will be no
included pending responses.

4.2 Nested DCR Graphs with Sub Processes

In this section, we will introduce an important extension to Nested Dynamic Con-
dition Response Graphs, by name subprocesses to model the replicated behavior in
processes.

4.2.1 Formal definition of Nested DCR Graphs with sub processes

First we define a Nested Dynamic Condition Response Graphs with subprocess for-
mally as follows.

4.2. Nested DCR Graphs with Sub Processes 105

Figure 4.6: Case Handling Process Runtime After Upload Document

Definition 4.2.1. A Nested Dynamic Condition Response Graphs with Subprocess is
a tuple G = (E�⇤� Sub� M� →•� •→� →�� →+� →%� L� l), where

(i) Sub : E → {0� 1} is a function defining subprocess events that can spawn
multiple instances. An event � is subprocess event if Sub(�) = 1.

(ii) (E�⇤� M� →•� •→� →�� →+� →%� L� l) is a nested DCR Graph with only one re-
striction that � •→ �� =⇒ � ∈ S����(��) where

S����(��) =
�

{��� | ∃� ≥ 1� ⇤1 (��) = ⇤�(���)} if Sub(⇤� (��)) = 1 for � ≥ 1
E otherwise

With the addition of subprocess events, we impose a restriction on response
relation in a DCR Graph, as an instance of a sub process event is created by executing
an event which has a response relation to it. The item (ii) says that, response relation
to an event whose ancestor/parent is a subprocess event (Sub(⇤� (��)) = 1 for � ≥ 1),
will only be allowed from the descendants of it’s parent i.e self/siblings or descendants
of them.

In order to explain the semantics of subprocesses in a better way, we will use
a revised version of prescribe medicine example shown in the figure 4.8. The ex-
ample contains a prescribe event modeling prescription of medicine by the doctor
and a nested subprocess event administer medicine, which contains sign(signing

106 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.7: Case Handling Process Runtime After Accept Dates

a prescription by doctor), remove (canceling a prescription by doctor), give (giving
medicine to patient by nurse) and don’t trust(prescription not trusted by the nurse).
The basic idea is that the doctor can prescribe any number of prescriptions and each
prescription will be administered individually.

Graphically in DCR Graphs, subprocesses will be represented by marking the
events with three parallel lines at the bottom (similar to the BPMN representation
of multi-instance subprocess activities). Any event either an atomic event or nesting
event (an event nested events) can be marked as a sub process event, but only sub
process events that are required as responses can be instantiated to spawn new
instances, as defined formally in the def 4.2.4. As shown in the example whenever the
doctor prescribes a medicine a new instance of sub process administer medicine will
be added to the process. The formal specification of the prescribe medicine example
in Nested DCR Graph with subprocesses is given in the listing 4.3.

Listing 4.3: Formal specification of prescribe medicine example in
Nested DCR Graphs with subprocesses.

A Nested DCR Graph with subprocesses G = (E�⇤� Sub� M� →•� •→� →�� →+� →%� L� l) where

E = {prescribe� administer medicine� sign� remove� give� don’t trust}

4.2. Nested DCR Graphs with Sub Processes 107

Figure 4.8: Prescribe medicine example with subprocesses

⇤ = {(sign� administer medicine)� (remove� administer medicine)�
(give� administer medicine)� (don’t trust� administer medicine)}

Sub = {(administer medicine� 1)� (sign� 0)� (remove� 0)� (give� 0)� (don’t trust� 0)}

M = (∅� {sign}� E)

→•= {(sign� don’t trust)}

•→= {(prescribe� administer medicine)� (don’t trust� sign)}

→�= {(sign� give)}

→+= {(sign� give)� (don’t trust� remove)}

→%= {(sign� remove)� (remove� administer medicine)� (don’t trust� give)�
(give� administer medicine)}

L = {(prescribe� D)� (sign� D)� (remove� D)� (give� N)� (don’t trust� N)}

l = {(prescribe� (prescribe� D))� (sign� (sign� D))� (remove� ((remove� D))� (give� (give� N))
(don’t trust� (don’t trust� N))}

108 Chapter 4. Dynamic Condition Response Graphs - Extensions
4.2.2 Flattening of Nested DCR Graph with sub processes

To define the execution semantics for Nested Dynamic Condition Response Graphs
with sub processes, we first define how to flatten a nested graph to the simpler
DCR Graph with subprocesses. We define the level of nesting as �����(�) = � if
⇤� (�) is defined and ⇤�+1(�) is undefined.

Definition 4.2.2. For a Nested DCR Graph with sub processes G = (E�⇤� Sub� M� →•
� •→� →�� →+� →%� L� l), define the underlying flat DCR Graph with subprocesses as

G� = (atoms(E)� SN � M� →•�� •→�� →��� →+�� →%�� L� l)

where

1. SN : E → N0 is a function mapping events to their subprocess nesting level as
such that SN (�) =

�
0≤�≤�����(�)

Sub(⇤� (�))

2. →� = ⌅ → ⇥ for some relation → ∈ {→•� →�� •→� →+� →%}

In the flatten graph, we introduced a function SN : E → N0 to keep track of the
subprocess nesting level, which will be 0 for non-subprocess events and for others,
it will be a summation of all subprocess flags till its top level parent event. Further,
all the relations from and to the nested events will be expanded to include their
descendant atomic events in the flattened graph (2).

Figure 4.9: Flattened prescribe medicine example

4.2. Nested DCR Graphs with Sub Processes 109
The flattened DCR Graph is shown in the figure 4.9. On can see that all the

relations are to the nested event are expanded to their children and also sub pro-
cess nesting level is marked adjacent to the events. All the events whose subprocess
nesting level greater than 0 are sub process events which can spawn new instances.
Further listing 4.4 shows specification of flat underlying DCR Graph for the pre-
scribe medicine Nested DCR Graph with sub processes given in the listing 4.3 that
is flattened according to the def 4.2.2.

Listing 4.4: Flattened DCR graph for prescribe medicine example

Nested graph from listing 4.3 G = (E�⇤� Sub� M� →•� •→� →�� →+� →%� L� l)

Underlying Flat DCR graph G� = (atoms(E)� SN � M� →•�� •→�� →��� →+�� →%�� L� l)
where

atoms(E) = E \ {administer medicine}

SN = {(prescribe� 0)� (sign� 1)� (remove� 1)� (give� 1)� (don’t trust� 1)}

M = (∅� {sign}� E)

→•� =→•

•→� =•→ ∪{(prescribe� sign)� (prescribe� remove)� (prescribe� give)�
(prescribe� don’t trust)} \ {(prescribe� administer medicine)}

→�� =→�

→+� =→+

→%� =→% ∪ {(remove� sign)� (remove� remove)� (remove� give)� (remove� don’t trust)�
(give� sign)� (give� remove)� (give� give)� (give� don’t trust)}

\ {(remove� administer medicine)� (give� administer medicine)}

4.2.3 Execution Sematics of DCR Graphs with Subprocesses

In this section, we go further and formalize in Def. 4.2.3, that an event � of a (flat)
DCR Graph (with sub processes) is enabled when it’s subprocess Index is 0, all its
included condition events are executed, and none of milestones events are pending
responses.

110 Chapter 4. Dynamic Condition Response Graphs - Extensions
Definition 4.2.3. For a (flat) DCR Graph with sub processes G = (E� SN � M� →•� •→
� →�� →+� →%� L� l), and M = (Ex� Re� In) we define that an event � ∈ E is enabled,
written M �G �, if SN (�) = 0 ∧ � ∈ In ∧ (In∩ →•� ⊆ Ex) ∧ (In∩ →�� ⊆ E\Re).

Now we will define execution semantics of an enabled event and describe the
changes that will be made to a DCR Graph with sub processes.Definition 4.2.4. For a DCR Graph with sub processes G = (E� SN � M� →•� •→� →�
� →+� →%� L� l), where M = (Ex� Re� In) the result of executing � is G ⊕ � = G� where
G� = (E�� S�

N � M�� →•�� •→�� →��� →+�� →%�� L� l �) is a DCR Graph with sub processes
such that

(i) E� = E ∪ {fresh(��) | � •→ �� ∧ SN (��) > 0}

(ii) S�
N (�1) =

�
SN (��) − 1 if �1 = fresh(��)
SN (�1) if �1 ∈ E

(iii) l �(�1) =
�

l(��) if �1 = fresh(��)
l(�1) if �1 ∈ E

(iv) �1 →� �2 if

(a) �1 → �2

(b) or �� = fresh(��
�) for � ∈ {1� 2} ∧ ��

1 → ��
2

(c) or �1 = fresh(��
1) ∧ ��

1 → �2
where →∈ {→•� •→� →�� →+� →%}

(d) or �2 = fresh(��
2) ∧ �1 → ��

2
where →∈ {→•� →�}

(v) M� = (Ex� Re� In) ⊕ � =���
�
Ex ∪ {�}� Re�� In�) where

(a) Re� = (Re \ {�}) ∪ {�� | �� ∈�•→ ∧SN (��) = 0} ∪ {fresh(��) ∈ E� \ E | (�� ∈
Re)}

(b) In� = (In∪ �→+) ∪ {fresh(��) ∈ E� \ E | (�� ∈ In)}\ �→%

Def. 4.2.4 defines the changes to DCR Graph with sub processes when an enabled
event is executed. The sub process events are instantiated to spawn new instances
when they are responses to the executed event �.

First a new instance will be created for each subprocess event which is response
to event � and update them to the events (E) set (i). Further, we use a temporary
set (fresh) (which is initially empty for each event execution), to keep track of newly
created events, as relations to the subprocess events are copied to the newly created
instances with some restrictions. The subprocess nesting index (SN) of newly created
event will be one less than that of its subprocess event as stated in (ii). Finally, the
set of labels (L) will remain the same, but the labelling function (l) will be updated by
adding mapping of the new instances of subprocess events with the labels of parent
subprocess events as shown in (iii).

4.2. Nested DCR Graphs with Sub Processes 111
The second step involves coping of relations from subprocess events to their newly

created instances. All the relations in between the subprocess events that both are
instantiated as part of event execution �, will be copied to their instances (ivb).
Similarly all the relations from a subprocess events pointing to atomic events are
copied from the new instances to the respective atomic events (ivc). But only condition
and milestone relations pointing from atomic events to subprocess events are copied
to the newly created instances of sub process events (ivd).

Finally, the marking will be updated by adding the executed event to the Ex set.
The included events set (In) will be updated by including/excluding all the events
that are included/excluded by the executing event � and all the new instances are
also added, if their parent subprocess event is included (vb). Updates to the pending
responses set (Re) are liftle bit different, as subprocess events are instantiated by
a response relation. First of all, the executed event (�) will be taken out of the
Re set and then all the atomic events which are responses to � are added. But in
order to propagate required as a response from subprocess events to their instances,
only those new instances whose parent subprocess event carries a initial pending
response (SN (��) > 0 ∧ �� ∈�•→ ∧Re) will be added to Re set.

Lets us use the prescribe medicine example again to explain the execution seman-
tics of DCR Graph with subprocesses. The figure 4.10 shows the prescribe medicine
example after the execution of prescribe event. When the prescribe event gets exe-
cuted, an instance of all the subprocess events which are responses for prescribe will
be created, added to set of events and respective relations are copied to the newly
created instances as defined in the def 4.2.4. The formal specification of prescribe
medicine example after the execution of prescribe event is given in the listing 4.5.

Listing 4.5: Prescribe medicine example after execution of prescribe

The result of executing event prescribe is G ⊕ prescribe = G� where
G = (E� SN � M� →•� •→� →�� →+� →%� L� l) = G� from listing 4.4

G� = (E�� S�
N � M�� →•�� •→�� →��� →+�� →%�� L� l�)

Let’s say fresh(sign) = sign[1], fresh(remove) = remove[1], fresh(give) = give[1] and
fresh(don’t trust) = don’t trust[1]�

E� = E ∪ {sign[1]� remove[1]� give[1]� don’t trust[1]}

SN
� = SN ∪ {(sign[1]� 0)� (remove[1]� 0)� (give[1]� 0)� (don’t trust[1]� 0)}

M� = ({prescribe}� {sign� sign[1]}� E�)

→•�=→• ∪ {(sign[1]� don’t trust[1])}

•→ � =•→ ∪ {(don’t trust[1]� sign[1])} (we copy only responses from subprocess events)

→� � =→� ∪ {(sign[1]� give[1])}

→+ � =→+ ∪ {(sign[1]� give[1])� (don’t trust[1]� remove[1])}

112 Chapter 4. Dynamic Condition Response Graphs - Extensions

Figure 4.10: Prescribe medicine example with an instance of subprocess

→% � =→% ∪ {(sign[1]� remove[1])� (remove[1]� sign[1])� (remove[1]� remove[1])�
(remove[1]� give[1])� (remove[1]� don’t trust[1])� (don’t trust[1]� give[1])�
(give[1]� sign[1])� (give[1]� remove[1])� (give[1]� give[1])� (give[1]� don’t trust[1])}

l � = l ∪ {(prescribe[1]� (prescribe� D))� (sign[1]� (sign� D))� (remove�
((remove� D))� (give[1]� (give� N))� (don’t trust[1]� (don’t trust� N))}

Definition 4.2.5. For a Nested DCR Graph with sub processes G = (E�⇤� Sub� M� →•
� •→� →�� →+� →%� L� l) with M = (Ex� Re� In) we define that � ∈ atoms(E) is enabled,
written M � G�, if the underlying flat DCR Graph with with sub processes M �G� �.

4.3. DCR Graphs with Data 113
Similarly, the result of executing event �, written as M ⊕ G� is same as M ⊕ G��.

4.3 DCR Graphs with Data

In this section we will introduce an another extension to the (Nested) DCR Graphs,
data. Here we consider a global data store as a set of variables that are shared
among the events of a DCR graph. The variables that can be read and/or assigned
by an event are explicitly defined in the model. We propose a simple model where
we allow integer as data types for the variables, as other primitive data types can
be easily encoded as integers.

The motivation for the extension of data also originated from the PhD candidate’s
visit to IBM Research, New York as part of stay abroad, to study the relation between
DCR Graphs and IBM Research’s declarative process model Business Artifacts with
Guard-Stage-Milestone (GSM Model) life cycles [Hull et al. 2011a].

Definition 4.3.1. We define integer expressions as,

iexp ::= Z | intvar | iexp ����� iexp

where ����� ∈ {+� −� ∗� %}

Definition 4.3.2. A Boolean expression is defined as

bexp ::= � | ⊥ | iexp OP iexp

where OP ∈ {=� <� >}, � is true and ⊥ is false.

In this extension to DCR Graphs, we add basic support for data as a global of
shared integer variables and the variables are modified and read by the events.
Further we also introduce notion of Boolean expressions built over the values of
variables confirming to syntax mention in the Def. 4.3.2. We also propose the notion
of guards (similar to GSM model, but the semantics are not exactly same) mapped over
the set of Boolean expressions which act as conditions on the events and relations.

Formally we first define a DCR Graph extended with data as follows and in the
next section we will also extend Nested DCR Graphs with data .

Definition 4.3.3. A Dynamic Condition Response Graph with Data is a tuple G =
(E� M�V�Bexp� →•� •→� →�� →+� →%� L� �� guard� ar� read� assign) where

(i) E is the set of events, ranged over by e,

(ii) M = (Ex� Re� In� σ) ∈ �(G) is the marking containing a set of executed events
(Ex), a set of pending responses (Re), a set of currently included events (In)
and current valuation of variables (σ : V → I��). The markings set �(G) =���
�(E) × �(E) × �(E) × I��V is a set of all markings where I��V is the set of all
valuations of variables V.

114 Chapter 4. Dynamic Condition Response Graphs - Extensions
(iii) V is the set of integer variables that represents a global data store and ranged

over by �

(iv) Bexp is a set of Boolean expressions ranged over by bexp,

(v) →•⊆ E × E is the condition relation

(vi) →�⊆ E × E is the milestone relation

(vii) •→⊆ E × Bexp × E is a guarded response relation,

(viii) →+⊆ E × Bexp × E is a guarded include relation,

(ix) →%⊆ E × Bexp × E is a guarded exclude relation,

(x) L is the set of labels

(xi) l : E → �(L) is a labeling function mapping events to sets of labels.

(xii) guard : E → Bexp is a function mapping events to Boolean expressions.

(xiii) ar = E → N is the arity of events indicating the number of input variables for
an event.

(xiv) read : E → �� ��(V) is a function specifying the variables that an event can read.

(xv) assign : E → (V ���� iexp) is a function indicating which variables can an
event modify, such that assign(�) =< �1 = ��1� ��� �� = ��� > where ��1� ��� ���
are integer expressions. Further the variables that are part of an expression
V ��(���) ⊆ read(�) ∪ {$� | 0 ≤ � ≤ ar(�)}.

An event labelled with an action represents an execution of a (human or auto-
mated) task/activity/action in the workflow process and each event can be mapped
to more than one label. The marking M (ii) defines the runtime state of DCR Graph
and consists of a set capturing which events have previously been executed (Ex),
which events are pending responses (Re), which events are currently included (In)
and finally current valuation of variables (σ : V → Int) in the global data store (V).

Further, (iv) defines a set of well-formed Boolean expressions formed according to
syntax defined in Def 4.3.2. Note that a Boolean expression can refer to the values of
the data variables (for example �1 > 5) and they are always evaluated in the context
of current marking.

Further, the condition (v) and milestone (vi) relations are same as normal DCR Graph,
but the response, include and exclude relations (vii - ix) are now guarded with
Boolean expressions (which can refer to data variables) attached to them. In case
of guarded relations, the relations will have additional constraint saying that the
Boolean expression must be true, in order for the relation take an effect. For exam-
ple, if two events �� �� are related by a guarded response relation (�• bexp−−→ ��), when

4.3. DCR Graphs with Data 115
the event � get executed the event �� will be added to set of responses (Re) only if
the bexp is true. Finally, guard is a function mapping events to Boolean expressions
as shown in (xii).

Further, (xiii) defines arity of events which specifies the number of input variables
that an event can have and for auto events the arity is 0, as auto events can not have
any input variables. Similarly read (xiv) is a function mapping events to finite set
of variables that an event can read values of variables. Moreover assign (xv), is a
function mapping events to expressions for assigning values to variables and we also
specify that variables of an expression should be either part of variables that an event
can read or input, to make sure in any case an event can not assign a value to a
variable, for which neither the event does have read mapping or part of it’s input
variables.

4.3.1 Nested DCR Graphs with Data

Now, we will go further and give the formal definition of a Nested Dynamic Condition
Response Graph with Data as follows,Definition 4.3.4. A Nested Dynamic Condition Response Graph with Data is a tuple
G = (E, ⇤, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign)� where

(i) (E, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign) is a Dynamic
Condition Response Graph with Data and

(ii) ⇤ : E � E is a partial function mapping an event to its super-event (if defined),
and

(iii) M ∈ �(atoms(E))×�(atoms(E))×�(atoms(E))× I��V, where atoms(E) = E\{� ∈
E | ∃�� ∈ E� ⇤ (��) = �} is the set of atomic events.

(iv) Es ⊆ atoms(E)

We write �⇤�� if �� = ⇤� (�) for 0 < � and write �⌅�� if �⇤�� or � = ��, and �⇥��

if �� ⇤ � or � = ��. We require that the resulting relation, ⌅ ⊂ E × E , referred to as
the nesting relation, is a well founded partial order. We also require that the nesting
relation is consistent with respect to dynamic inclusion/exclusion in the following
sense: If � ⇤ �� or �� ⇤ � then � →+ ∩�� →%= ∅.

To define the execution semantics for a Nested Dynamic Condition Response
Graph with Data, we first define how to flatten a nested graph to DCR Graph with Data
in def 4.3.5. Essentially, all relations to and/or from nested events are extended to
sub events, and then only the atomic events are preserved. Further, we define the
level of nesting as �����(�) = � if ⇤� (�) is defined and ⇤�+1(�) is undefined.Definition 4.3.5. For a Nested Dynamic Condition Response Graph with Data G = (E,
⇤, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign)� we define the
underlying flat DCR Graph with Data as
G� = (atoms(E)� M�V�Bexp� →•�� •→�� →��� →+�� →%�� L� l� ar� guard�� read�� assign�)
where

116 Chapter 4. Dynamic Condition Response Graphs - Extensions
(i) ���� = ⌅���⇥ for some relation ��� ∈ {→•� •→� →�� →+� →%}

(ii) guard�(�) =
�

0≤�≤�����(�) guard(⇤� (�)

(iii) ���� = ��� \ {(�� ���(�)) | ∃�� ∈ E� ⇤ (��) = �} ∪ {(��� ���(��)) | 0 < � ≤
� ∧ ⇤� (��) = �} for ��� ∈ {read� assign}.

In flattening a nested DCR Graph with data into a DCR Graph with data, all
the relations from the super events will be propagated to their decedent events as
shown in (i), like in case of nested DCR Graphs (4.1.3). Similarly, Boolean expressions
of super events are also propagated to their decedents and therefore a Boolean
expression of a nested event (or atomic event) will be in conjunction of all such
expressions inherited from its super event (ii). Furthermore, ������ and ���� function
mappings for super events are expanded to their decedents as shown in (iii).

We now define when an event � is enabled in DCR Graph with data in def 4.3.6.
An event � is enabled if it is included in current marking (� ∈ In), all its condition
events are executed (→• (�) ∈ Ex), all its milestone events are not in set of pending
responses (→� (�) ∈ E\Re) and the Boolean expression assigned to the event should
be true when evaluated in the context of current marking ([[guard(�)]]M).

Definition 4.3.6. For a Dynamic Condition Response Graph with Data G = (E, M, V,
Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign)� and M = (Ex� Re� In� σ) we
define that an event � ∈ E is enabled, written M �G �, if

(i) � ∈ In

(ii) →• (�) ∈ Ex

(iii) →� (�) ∈ E \ Re

(iv) [[guard(�)]]M

We will now define the changes to marking when an enabled event is executed.

Definition 4.3.7. For a Dynamic Condition Response Graph with Data with data
G = (E, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign) with a
marking M = (Ex� Re� In� σ) and an enabled event M �G � , the result of executing �
is M ⊕G � = M� where the updated marking M� = (Ex�� Re�� In�� update(σ� assign(�)))
such that,

(i) Ex� = Ex ∪ {�}

(ii) Re� = Re \ {�} ∪ {�� | � •→ (bexp� ��) ∧ [[bexp]]M}

(iii) In� =
�
In ∪ {�� | � →+ (bexp� ��) ∧ [[bexp]]M}

�
\ {�� | � →% (bexp� ��) ∧ [[bexp]]M}

(iv) update(σ� assign(�)) : V → Int is a function updating data store such that

σ �(�) =
�

σ (�) if � �∈ ���(assign(�))
[[assign(�)(�)]]M

4.3. DCR Graphs with Data 117
Def. 4.3.7 above then defines the change of the marking when an enabled event is

executed: First the event is added to the set of executed events (i). Further the set of
pending responses (Re) will be updated by removing the event � and adding all the
events which are responses for event � with guard (Boolean expression) associated
with response relation evaluated to true (ii). Similarly the set of included events is
updated by adding/removing events which are included/excluded by event � with the
guard (Boolean expression) associated with relation is evaluated to true (ii). Finally,
the current valuation of variable (σ) will be updated with new data values assigned
by the event � (iv).Definition 4.3.8. For a Nested Dynamic Condition Response Graph with Data G =
(E, ⇤, M, V, Bexp, →•, •→, →�, →+, →%, L, l, guard, ar, read, assign), where
M = (Ex� Re� In� σ) we define that � ∈ atoms(E) is enabled, written M �G �, if the
underlying flat DCR Graph with data M �G� �. Similarly, the result of executing
event �, written as M ⊕G � is same as M ⊕ G��.

4.3.2 Healthcare Example in DCR Graphs with Data

In this section, we will use our running example prescribe medicine to explain the
semantics of DCR Graphs with data.

Figure 4.11: Prescribe medicine example in DCR Graphs with data.

Figure 4.11 shows prescribe medicine example modeled using DCR Graphs with

118 Chapter 4. Dynamic Condition Response Graphs - Extensions
data, where we have the same four events prescribe medicine, sign, give medicine
and don’t trust and they mean same as what we have discussed in the Sec. 3.4. Now
we have variables from a shared data store and the variables that can be read by
an event are marked under the events with a function read, which maps each event
to set of variables. For example the variable pres meant for storing the values of
prescription and we can notice that all the events in example have access to read
the variable pres, where as only prescribe medicine event can assign a value for the
pres variable, since the event has the mapping for the variable in the assign function.
Further, the arity (ar) of prescribe medicine event is 1 (not shown in the figure), which
indicates that the event has one input field, whose value will be assigned to variable
pres. The mapping between the input fields and variables are defined in the assign
function (Def. 4.3.3-xv).

Similarly, trustP (meaning trust prescription) is a variable that can assigned a
value by sign and don’t trust events. When the sign event gets executed, it assigns a
value 1 to the trustP variable. In this case, we have a predefined assignment meaning
that whenever sign event gets executed, it will always assign 1 to trustP. Furthermore
the sign event always uses predefined assignment, hence there will no input field,
which means the arity of sign event is 0. As explained before, Boolean expressions
(Bexp) can be defined over the values of variables and one such expression is trustP
= 1, which is defined as guard for the event give medicine with a syntax @(trustP
= 1). The guards for events and relations are always evaluated in the context of
the current marking, and the marking in DCR Graphs with data now includes the
valuation set of variables in addition to the standard three sets.

Let’s consider an execution <prescribe medicine, sign, don’t trust > where the
doctor has prescribed a medicine (by assigning some value to pres) and executed the
sign event, (which automatically assigns a value 1 to trustP variable). Further when
the nurse executes don’t trust event, the trustP will be assigned to value 0, making
the guard @(trustP = 1) evaluates to false. In that context, the event give medicine
will not be enabled because of it’s guard @(trustP = 1) evaluates to false. Later
the doctor may choose to assign a new value for pres and then execute sign or else
he may simply choose to re-execute the sign event, making the value of trustP to 1,
which will make the event give medicine enabled.

One may observe in the Def. 4.3.3 that only response (•→), include (→+) and
exclude (→%) are defined as guarded relations, but condition (→•) and milestone (→�)
relations do not have any guards, as they are blocking relations. In this figure 4.11,
we have not shown any guards on the relations, therefore all the guarded relations
will have a guard mapped to true (�). In case if there are guards on the relations,
then the guards will be evaluated in the current marking before updating the marking
for the guarded relation and in case if the guard evaluated to false, then no updates
will be applied to the marking for that relation.

4.4. Summary 119
4.4 Summary

In this chapter, we have given a conservative extension of DCR Graphs to allow for
nested sub-graphs motivated from guided by a case study carried out jointly with our
industrial partner in the section 4.1. Later, in section 4.2 we have introduced another
important extension multi instance sub processes to model replicated behavior in
DCR Graphs. Finally, in the section 4.3, we have added support for data to the
DCR Graphs based on the motivation from both the case management case study
and from the study of relating DCR Graphs with the IBM Research’s declarative
workflow business artifacts with guard-stage-milestone life cycles model.

Chapter 5Distribution of DCR Graphs
In the previous chapter (4), we have introduced several extensions of DCR Graphs
and in this chapter we will introduce a technique to distribute DCR Graphs as a
set of local components to model local behavior and to guarantee that the behavior
in local components is consistent with the global behavior. First we will introduce
and define the notion of projection and composition on DCR Graphs in section 5.3,
then we will introduce semantics of synchronous distributed execution in sec 5.3.3 by
defining the notion of networks of DCR Graphs.

Further we will extend the distribution technique to the nested DCR Graphs in the
section 5.4 and also we exemplify the distribution technique of nested DCR Graphs
using healthcare workflow that was introduced in the case study 2.1.3. Finally, we
will also prove the theorems (thm 5.3.1 and thm 5.4.1) for distributed execution of
DCR Graphs and nested DCR Graphs saying that the behavior in global graph is
bisimilar to the behavior in the network of projected graphs.

5.1 Introduction

In general the commercial workflow implementations are based on a centralized
workflow manager controlling the execution of the entire, global workflow. However,
workflows often span different units or departments within the organization, e.g. the
pharmacy and the patient areas, or even cross boundaries of different organizations
(e.g. different hospitals). In some situations it may be very relevant to execute the
local parts of the workflow on a local (e.g. mobile) device without permanent access
to a network, e.g. during preparation of the medicine in the pharmacy. Also, different
organizations may want to keep control of their own parts of the workflow and not
delegate the management to a central service. This motivates the ability to split the
workflow in separate components, each only referring to the activities relevant for
the local unit and being manageable independently of the other components.

A model-driven software engineering approach to distributed information systems
typically include both global models describing the collective behavior of the system
being developed and local models describing the behavior of the individual peers or
components.

The global and local descriptions should be consistent. If the modeling languages
have formal semantics and the local model language support composition of individual
processes, the consistency can be formally established, which we will refer to as the
consistency problem: Given a global model and a set of local models, is the behavior
of the composition of the local models consistent with the global model? In order

122 Chapter 5. Distribution of DCR Graphs
to support top-down model-driven engineering starting from the global model, one
should address the more challenging distributed synthesis problem: Given a global
model and some formal description of how the model should be distributed, can
we synthesize a set of local processes with respect to this distribution which are
consistent to the the global model?

In past work, as discussed in related work (sec 5.2), the result of the distributed
synthesis have been a network of local processes described in an imperative process
model, e.g. as a network of typed pi-calculus processes or a product automaton. The
global process description has either been given declaratively, e.g. in some temporal
logic, or imperatively, e.g. as a choreography or more generally a transition system.

In this chapter, we address the distributed synthesis problem in a setting where
both the global and the local processes are described declaratively as DCR Graphs.

To safely distribute a DCR Graph we first define (Def. 5.3.1, Sec. 5.3.1) a new
general notion of projection of DCR Graphs relative to a subset of labels and events.
The key point is to identify the set of events that must be communicated from other
processes in the network in order for the state of the local process to stay consis-
tent with the global specification (Prop. 5.3.1-5.3.3, Sec. 5.3.1). To also enable the
reverse operation, building global graphs from local graphs, we then define the com-
position of two DCR Graphs, essentially by gluing joint events. As a sanity check
we prove (Prop. 5.3.4, Sec. 5.3.2) that if we have a collection of projections of a DCR
Graph that cover the original graph (Def. 5.3.5, Sec. 5.3.2) then the composition yields
back the same graph. We then finally proceed to the main technical result, defining
networks of synchronously communicating DCR Graphs and stating (in Thm. 5.3.1,
Sec. 5.3.3) the correspondence between a global process and a network of communi-
cating DCR Graphs obtained from a covering projection (relying on Prop. 5.3.1-5.3.3).
Throughout the paper we exemplify the distribution technique on a simple cross-
organizational process identified within a case study (sec 4.1.3) carried out jointly
with Exformatics A/S using DCR Graphs for model-driven design and engineering of
an inter-organizational case management system.

Further in the Sec. 5.4, we extend the notion of projection on nested DCR Graphs
and provide the semantics for distributed execution on nested DCR Graphs. Further
we then proceed to the main technical result on nested DCR Graphs, stating (in
Thm. 5.4.1) the correspondence between a global process and a network of communi-
cating nested DCR Graphs obtained from a covering projection (relying on Prop. 5.4.1).

In this chapter, we will follow the following notation.Notation: For a set A we write �(A) for the power set of A. For a binary relation
→⊆ A×A and a subset ξ ⊆ A of A we write →ξ and ξ → for the set {� ∈ A | (∃�� ∈
ξ | � → ��)} and the set {� ∈ A | (∃�� ∈ ξ | �� → �)} respectively. Also, we write
→−1 for the inverse relation. Finally, for a natural number � we write [�] for the set
{1� 2� � � � � �}.

5.2. Related Work 123
5.2 Related Work

There are many researchers [van der Aalst 1999a, Kindler et al. 2000, ter Hofstede
et al. 2003, van der Aalst et al. 2010b, Aalst & Weske 2001, van der Aalst 2003,
Martens 2005] who have explicitly focussed on the problem of verifying the correctness
of inter-organizational workflows in the domain of petri nets. In [van der Aalst 1999a],
message sequence charts are used to model the interaction between the participant
workflows that are modeled using petri nets and the overall workflow is checked for
consistency against an interaction structure specified in message sequence charts.
In [Kindler et al. 2000] Kindler et. al. followed a similar but more formal and concrete
approach, where the interaction of different workflows is specified using a set of
scenarios given as sequence diagrams and using criteria of local soundness and
composition theorem, guaranteed the global soundness of an inter-organizational
workflow. The authors in [ter Hofstede et al. 2003] proposed Query Nets based on
predicate/transition petri nets to guarantee global termination, without the need for
having the global specification. The work on workflow nets [Aalst & Weske 2001,
van der Aalst 2003] use a P2P (Public-To-Private) approach to partition a shared
public view of an inter-organizational workflow over its participating entities and
projection inheritance is used to generate a private view that is a subclass to the
relevant public view, to guarantee the deadlock and livelock freedom. Further a more
liberal and a weaker notion than projection inheritance, accordance has been used
in [van der Aalst et al. 2010b] to guarantee the weak termination in the multiparty
contracts based on open nets.

Figure 5.1: Key problems studied in related work

Modeling global behavior as a set of conversations among participating services
has been studied by many researchers [Fu et al. 2004b, Yi & Kochut 2004a, Rinderle
et al. 2006, Wodtke & Weikum 1997, Bravetti & Zavattaro 2007, Bravetti & Zavat-
taro 2009] in the area business processes. An approach based on guarded automata

124 Chapter 5. Distribution of DCR Graphs
studied in [Fu et al. 2004b], for the realizability analysis of conversation protocols,
whereas the authors in [Yi & Kochut 2004a] used colored petri nets to capture the
complex conversations. A framework for calculating and controlled propagation of
changes to the process choreographies based on the modifications to partner’s pri-
vate processes has been studied in [Rinderle et al. 2006]. Similarly, but using process
calculus to model service contracts, Bravetti-Zavattaro proposed conformance notion
for service composition in [Bravetti & Zavattaro 2007] and further enhanced their
correctness criteria in [Bravetti & Zavattaro 2009] by the notion of strong service
compliance.

Researchers [Fdhila & Godart 2009, Nanda et al. 2004, Khalaf & Leymann 2006,
Mitra et al. 2008] in the web services community have been working on web service
composition and decentralized process execution using BPEL [OASIS WSBPEL Tech-
nical Committee 2007] and other related technologies to model the web services. A
technique to partition a composite web service using program analysis was studied
in [Nanda et al. 2004] and on the similar approach, [Khalaf & Leymann 2006] ex-
plored decomposition of a business process modeled in BPEL, primarily focussing on
P2P interactions . Using a formal approach based on I/O automata representing the
services, the authors in [Mitra et al. 2008] have studied the problem of synthesizing
a decentralized choreography strategy, that will have optimal overhead of service
composition in terms of costs associated with each interaction.

The derivation of descriptions of local components from a global model has been
researched for the imperative choreography language WS-CDL in the work on struc-
tured communication-centred programming for web services by Carbone, Honda and
Yoshida [Carbone et al. 2007]. To put it briefly, the work formalizes the core of WS-CDL
as the global process calculus and defines a formal theory of end-point projections
projecting the global process calculus to abstract descriptions of the behavior of each
of the local "end-points" given as pi-calculus processes typed with session types.

A methodology for deriving process descriptions from a business contract formal-
ized in a formal contract language was studied in [Milosevic et al. 2006], while [Sadiq
et al. 2006] proposes an approach to extract a distributed process model from collabo-
rative business process. In[Fdhila et al. 2009, Fdhila & Godart 2009], the authors have
proposed a technique for the flexible decentralization of a process specification with
necessary synchronization between the processing entities using dependency tables,
where as the authors in [Dong et al. 2000] presented a framework for optimizing the
physical distribution of workflow schemas based on the families of communicating
flow charts.

In [Castellani et al. 1999, Heljanko & Stefanescu 2005, Mukund 2002] foundational
work has been made on synthesizing distributed transition systems from global speci-
fication for the models of synchronous product and asynchronous automata[Zielonka 1987].
In [Mukund 2002] Mukund categorized structural and behavioral characterizations of
the synthesis problem for synchronous and loosely cooperating communication sys-
tems based on three different notions of equivalence: state space, language and
bisimulation equivalence. Further Castellani et. al. [Castellani et al. 1999] character-
ized when an an arbitrary transition system is isomorphic to its product transition

5.3. DCR Graphs - Projection and Composition 125
systems with a specified distribution of actions and they have shown that for finite
state specifications, a finite state distributed implementation can be synthesized.
Complexity results for distributed synthesis problems for the three notions of equiv-
alences were studied in [Heljanko & Stefanescu 2005].

Many commercial and research workflow management systems also support dis-
tributed workflow execution and some of them even support ad-hoc changes as
well. ADEPT [Reichert & Bauer 2007], Exotica [Mohan et al. 1995], ORBWork [Das
et al. 1996], Rainman [Paul et al. 1997] and Newcastle-Nortel [Shrivastava et al. 1998]
are some of the distributed workflow management systems. A good overview and dis-
cussion about distributed workflow management systems can be found in [Reichert
et al. 2009, Ranno & Shrivastava 1999].

So far the formalisms discussed above are more or less confined to imperative
modeling languages such as Petri nets, workflow/open nets and automata based lan-
guages. To the best of our knowledge, there exists very few works [Fahland 2007,
Montali 2010] that have studied the synthesis problem in declarative modeling lan-
guages and none where both the global and local processes are given declaratively.
In [Fahland 2007], Fahland has studied synthesizing declarative workflows expressed
in DecSerFlow [van der Aalst & Pesic 2006b] by translating to Petri nets. Only a
predefined set of DecSerFlow constraints are used in the mapping to the Petri nets
patterns, so this approach has a limitation with regards to the extensibility of the
DecSerFlow language. On the other hand, in [Montali 2010] Montali has studied
the composition of ConDec [van der Aalst & Pesic 2006a] models with respect to
conformance with a given choreography, based on the compatibility of the local Con-
Dec models. But his study was limited to only composition, whereas the problem of
synthesizing local models from a global model has not been studied.

5.3 DCR Graphs - Projection and Composition

In this section we define projections and compositions of DCR Graphs. In Sec. 5.3.1
below we define the notion of projection of a DCR Graphs, restricting the graph to a
subset of the events and labels, and in Sec. 5.3.2 we define the technique for binary
composition of two DCR Graphs, to get a global DCR Graph.

5.3.1 Projection

First we define how to project a DCR Graph G with respect to a projection parameter
δ = (δE� δL) where δE ⊆ E is a subset of the events of G and δL ⊆ L is a subset of
the labels.

Intuitivly, the projection G|δ contains only those events and relations that are
relevant for the execution of events in δE and the labeling is restricted to the set δL.
This includes both the events in δE and any other event that can affect the marking,
or ability to execute of an event in δE through one or more relations. The technical
difficulty is to infer the events and relations not in δE, referred to as external events

126 Chapter 5. Distribution of DCR Graphs
below, that should be included in the projection because they influence the execution
of the workflow restricted to the events in δE.

Definition 5.3.1. If G = (E� M� →•� •→� →�� →+� →%� L� �) then G|δ =
(E|δ � M|δ � →•|δ � •→|δ � →�|δ � →+|δ � →%|δ � δL� �|δ) is the projection of G with respect to
δ ⊆ E where:

(i) E|δ =→δE, for →=
�

�∈C
�, and C = {id, →•, •→, →�, →+, →%, •→→�, →+→•,

→%→•, →+→�, →%→�}

(ii) ł|δ (�) =
�

l(�) ∩ δL if � ∈ δE

∅ if � ∈ E|δ\δE

(iii) M|δ = (Ex|δ � Re|δ � In|δ) where:

(a) Ex|δ = Ex ∩ E|δ

(b) Re|δ = Re ∩ (δE∪ →� δE)
(c) In|δ = In ∩ (δE∪ →• δE∪ →� δE)

(iv) →•|δ=→• ∩((→• δE) × δE)

(v) •→|δ=•→ ∩((•→→� δE) × (→� δE)) ∪ ((•→ δE) × δE))

(vi) →�|δ=→� ∩((→� δE) × δE)

(vii) →+|δ=→+ ∩
��

(→+ δE) × δE
�

∪
�
(→+→• δE) × (→• δE

�
∪

�
(→+→� δE) × (→�

δE
��

(viii) →%|δ=→% ∩
��

(→% δE)×δE
�
∪

�
(→%→• δE)×(→• δE

�
∪

�
(→%→� δE)×(→� δE

��

(i) defines the set of events as the union of the set δE of events that we project
over, any event that has a direct relation towards an event in δE and events that
exclude or include an event which is either a condition or a milestone for an event
in δE. The additional events will be included in the projection without labels, as can
be seen from the definition of the labeling function in (ii). This means that the events
can not be executed locally. However, when composed in a network containing other
processes that can execute these events, their execution will be communicated to the
process. For this reason we refer to these events as the (additional) external events
of the projection. As proven in Prop. 5.3.1-5.3.3 the communication of the execution
of this set of external events in addition to the local events shared by others ensure
that the local state of the projection stay consistent with the global state.

Further (iii) defines the projection of the marking: The executed events remain the
same, but are limited to the events in E|δ . The responses are restricted to events in
δE and events that have a milestone relation to an event in δE because these are the

5.3. DCR Graphs - Projection and Composition 127
only responses that will affect the local execution of the projected graph. Note that
these events will by definition be events in E|δ but may be external events. In case of
set of included events, we take the actual included status of the events in projection
parameter along with the events that are conditions and milestones to the events
in projection parameter, as the include status of those events will have an influence
on the execution of events in local graph. All other external events of the projected
graph are not included in the projected marking regardless of their included status
in the marking of the global graph, because their include/exclude status will have no
influence on the execution of events in local graph. Finally, (iv), (v), (vi), (vii) and (viii)
state which relations should be included in the projection. For the events in δE all
incoming relations should be included. Additionally inclusion and exclusion relations
to events that are either a condition or a milestone for an event in δE are included
as well.

To define networks of communicating DCR Graphs and their semantics we use
the following extension of a DCR Graph allowing any event to be executed with a
special input label (ε). These transitions will only be used for the communication in
a network and thus not be visible as user events.

Definition 5.3.2. For an DCR Graph G = (E�⇤� M� →•� •→� →�� →+� →%� L� l) define
Gε = (E�⇤� M� →•� •→� →�� →+� →%� L ∪ {ε}� l ε), where l ε = l(�) ∪ {ε} (assuming
that ε �∈ L).

We are now ready to state the key correspondence between global execution of
events and the local execution of events in a projection.

Proposition 5.3.1. Let G = (E� M� →•� •→� →�� →+� →%� L� l) be a DCR Graph and
G|δ its projection with respect to a projection parameter δ = (δE� δL). Then,
for � ∈ δE and � ∈ δL it holds that M �G � ∧ M ⊕G � = M� ∧ M�

|δ = M�� if and only if
M|δ �G|δ � ∧ M|δ ⊕G|δ � = M��.

Proof. In order to prove the proposition, we have to show that the proposition in both
directions.

(G→P) for � ∈ δE and � ∈ δL. M �G � ∧ M ⊕G � = M� ∧ M�
|δ = M�� =⇒ M|δ �G|δ

� ∧ M|δ ⊕G|δ � = M��.
We will split the proof into 2 steps:

(A) M �G � =⇒ M|δ �G|δ �
From def 3.3.7, we have M �G � =⇒ � ∈ In ∧ (In∩ →• �) ⊆ Ex and
(In∩ →��) ⊆ E\Re.

In order to prove that M|δ �G|δ �, we have to show that
� ∈ In|δ ∧ (In|δ∩ →•|δ �) ⊆ Ex|δ ∧ (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ . We will prove
each part individually as follows,

128 Chapter 5. Distribution of DCR Graphs
(i) To prove: � ∈ In|δ

From def 5.3.1-iiic we have,
In|δ = In ∩ (δE∪ →• δE∪ →� δE) therefore
� ∈ In ∧ � ∈ δE =⇒ � ∈ In|δ .

(ii) To prove: (In|δ∩ →•|δ �) ⊆ Ex|δ

∀�� ∈ (In|δ∩ →•|δ �)�
(a) �� ∈ In|δ =⇒ �� ∈ In
(b) form the def 5.3.1-iv, we have →•|δ=→• ∩((→• δE)×δE) therefore

�� ∈→•|δ � =⇒ �� ∈→•�.

Using above 2 statements and from M �G �
∀����� ∈ (In|δ∩ →•|δ �) =⇒ �� ∈ (In∩ →•�) =⇒ �� ∈ Ex,
Further, from def 5.3.1-iiia we have Ex|δ = Ex ∩ E|δ therefore
�� ∈ E|δ ∧ �� ∈ Ex =⇒ �� ∈ Ex|δ
Hence we can conclude that (In|δ∩ →•|δ �) ⊆ Ex|δ

(iii) To prove: (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ

∀�� ∈ (In|δ∩ →�|δ �)
(a) �� ∈ In|δ =⇒ �� ∈ In
(b) form the def 5.3.1-vi, we have →�|δ=→� ∩((→� δE)×δE) therefore

�� ∈→�|δ � =⇒ �� ∈→��.

Using above 2 statements and from M �G �
�� ∈ (In|δ∩ →�|δ �) =⇒ �� ∈ (In∩ →��) =⇒ �� ∈ E\Re =⇒ �� �∈
Re,

According to def 5.3.1 iiib, we have Re|δ = Re ∩ (δE∪ →� δE). and so
�� �∈ Re =⇒ �� �∈ Re|δ .
Further, �� ∈ E|δ ∧ �� �∈ Re|δ =⇒ �� ∈ E|δ \ Re|δ .
Hence we can conclude that (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ

From (G→P)-A-i, (G→P)-A-ii and (G→P)-A-iii, we have proved that � ∈
In|δ ∧ (In|δ∩ →•|δ �) ⊆ Ex|δ ∧ (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ is valid.
Therefore we can conclude that M �G � =⇒ M|δ �G|δ �.

(B) To prove: M ⊕G � = M� ∧ M�
|δ = M�� =⇒ M|δ ⊕G|δ � = M��

We have M ⊕G � = M� where M = (Ex� Re� In) and M� = (Ex�� Re�� In�)

5.3. DCR Graphs - Projection and Composition 129
and from the def 3.3.8, we can infer
Ex� = Ex ∪ {�}� Re� = (Re \ {�})∪ �•→� and In� = (In ∪ �→+)\ �→%.

In projected graph, we have M|δ = (Ex|δ � Re|δ � In|δ), M�� = (Ex��
|δ � Re��

|δ � In��
|δ)

and from above result we know that M|δ �G|δ �. Hence we can infer that
Ex��

|δ = Ex|δ ∪ {�}� Re��
|δ = (Re|δ \ {�})∪ �•→|δ � and In��

|δ = (In|δ∪ �→+|δ
)\ �→%|δ .

We have to prove that M�
|δ = M��. In order to prove this equivalence,

we will show that Ex�
|δ = Ex��

|δ , Re�
|δ = Re��

|δ and In�
|δ = In��

|δ individually as
follows,

(i) To prove: Ex�
|δ = Ex��

|δ

Ex�
|δ = (Ex ∪ {�}) ∩ E|δ from def 5.3.1-iiia

= (Ex ∩ E|δ) ∪ ({�} ∩ E|δ) distributive law of sets
= Ex|δ ∪ {�} according to def 5.3.1-iiia and � ∈ δE ⊆ E|δ .
= Ex��

|δ .
Hence we can conclude that Ex�

|δ = Ex��
|δ

(ii) To prove: Re�
|δ = Re��

|δ

According to def 5.3.1-v, the response relation in projected graph is
•→|δ=•→ ∩((•→→� δE) × (→� δE)) ∪ ((•→ δE) × δE)).
Informally it contains relations which can cause a response on an
event which is either included in the set of events in the project pa-
rameter (δE) or in a set of events which are milestones to events in
project parameter (→� δE).
•→|δ= {(���� ��) | ��� •→ �� ∧ �� ∈ (δE∪ →� δE)} and hence
�•→|δ= {�� | � •→ �� ∧ �� ∈ (δE∪ →� δE)}

Re�
|δ =

�
(Re \ {�})∪ �•→

�
∩ (δE∪ →� δE) from def 5.3.1-iiib

=
�
(Re\{�})∩ (δE∪ →� δE)

�
∪

�
�•→ ∩(δE∪ →� δE)

�
distributive law

=
�
Re ∩ (δE∪ →� δE) \ ({�} ∩ (δE∪ →� δE)

�
∪

�
�•→ ∩(δE∪ →� δE)

�

set intersection distributes over set difference
= (Re|δ \ {�}) ∪

�
�•→ ∩(δE∪ →� δE)

�

= (Re|δ \ {�}) ∪ {�� | � •→ �� ∧ �� ∈ (δE∪ →� δE)}
= (Re|δ \ {�})∪ �•→|δ
= Re��

|δ
Hence we can conclude that Re�

|δ = Re��
|δ .

(iii) To prove: In�
|δ = In��

|δ

130 Chapter 5. Distribution of DCR Graphs
(iii-a) According to def 5.3.1-vii, the include relation in projected graph

is
→+|δ=→+ ∩

��
(→+ δE)×δE

�
∪

�
(→+→• δE)×(→• δE

�
∪

�
(→+→�

δE) × (→� δE
��

→+|δ= {(���� ��) | ��� →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ= {�� | � →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ=�→+ ∩(δE∪ →• δE∪ →� δE)

(iii-b) Similarly, according to def 5.3.1-viii, the exclude relation in pro-
jected graph is
→%|δ=→% ∩

��
(→% δE)×δE

�
∪

�
(→%→• δE)× (→• δE

�
∪

�
(→%→�

δE) × (→� δE
��

→%|δ= {(���� ��) | ��� →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ= {�� | � →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ=�→% ∩(δE∪ →• δE∪ →� δE)

From def 5.3.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)
Hence we can compute the projection of global included set (In�) as
follows
In�

|δ = In� ∩ (δE∪ →• δE∪ →� δE)
But we know that In� = (In ∪ �→+)\ �→%
In�

|δ =
�
(In ∪ �→+)\ �→%

�
∩ (δE∪ →• δE∪ →� δE)

In�
|δ =

�
(In ∪ �→+) ∩ (δE∪ →• δE∪ →� δE)

�
\

�
�→% ∩(δE∪ →•

δE∪ →� δE)
�

set intersection distributes over set difference

In�
|δ =

�
(In ∩ (δE∪ →• δE∪ →� δE)

�
∪

�
�→+ ∩(δE∪ →• δE∪ →�

δE)
�

\
�

�→% ∩(δE∪ →• δE∪ →� δE)
�

distributive law
Using results (iii-a) and (iii-b), we can rewrite the above statement
as
In�

|δ =
��

In ∩ (δE∪ →• δE∪ →� δE)
�

∪ �→+|δ

�
\ �→%|δ

But we know that the marking in projected graph before executing
event � is In|δ = In ∩ (δE∪ →• δE∪ →� δE). Using this fact, we can
rewrite the above statement as follows,

In�
|δ = (In|δ∪ �→+|δ)\ �→%|δ

In�
|δ = In��

|δ

Hence we can conclude that In�
|δ = In��

|δ .
From (G→P)-B-i, (G→P)-B-ii and (G→P)-B-iii, we have proved that Ex�

|δ =
Ex��

|δ , Re�
|δ = Re��

|δ and In�
|δ = In��

|δ . and there by we can conclude that

5.3. DCR Graphs - Projection and Composition 131
M�

|δ = M��.

Since we have proved both parts: ((G→P)-A and (G→P)-B), the proposition
M ⊕G � = M� ∧ M�

|δ = M�� =⇒ M|δ ⊕G|δ � = M�� holds.

(P→G) for � ∈ δE and � ∈ δL. M|δ �G|δ � ∧ M|δ ⊕G|δ � = M�� =⇒ M �G � ∧ M ⊕G � =
M� ∧ M�

|δ = M��

Again, we will split the proof into 2 parts.

(A) M|δ �G|δ � =⇒ M �G �
From def 3.3.7, we have M|δ �G|δ � =⇒ � ∈ In|δ ∧ (In|δ∩ →•|δ �) ⊆
Ex|δ ∧ (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ

In order to prove that M �G �, we have to show that
� ∈ In ∧ (In∩ →•�) ⊆ Ex and (In∩ →��) ⊆ E\Re

(i) To prove: � ∈ In

From def 5.3.1-iiic we have: In|δ = In ∩ (δE∪ →• δE∪ →� δE)
� ∈ In|δ ∧

�
In|δ = In ∩ (δE∪ →• δE∪ →� δE)

�
=⇒ � ∈ In.

(ii) To prove: (In∩ →•�) ⊆ Ex

From def 5.3.1-iv, we have →•|δ=→• ∩((→• δE) × δE)
∀����� ∈→•|δ � =⇒ (��� �) ∈→•|δ =⇒ (��� �) ∈→• =⇒ �� ∈→• �
and therefore →•|δ � = →•�.
∀����� ∈ (In|δ∩ →•|δ �) =⇒ (�� ∈ In|δ) ∩ (�� ∈→•|δ �) =⇒ (�� ∈
In) ∩ (�� ∈→•�) =⇒ �� ∈ (In∩ →•�), and hence
(In|δ∩ →•|δ �) = (In∩ →•�).

(In|δ∩ →•|δ �) ⊆ Ex|δ =⇒ (In∩ →•�) ⊆ Ex|δ .
according to def 5.3.1-iiia : Ex|δ = Ex ∩ E|δ .
Hence (In∩ →•�) ⊆ Ex|δ =⇒ (In∩ →•�) ⊆ Ex

(iii) To prove: (In∩ →��) ⊆ E\Re

From def 5.3.1-vi, we have →�|δ=→� ∩((→� δE) × δE),
∀����� ∈→�|δ � =⇒ (��� �) ∈→�|δ =⇒ (��� �) ∈→� =⇒ �� ∈→� �
and therefore →�|δ � = →��.
∀����� ∈ (In|δ∩ →�|δ �) =⇒ (�� ∈ In|δ) ∩ (�� ∈→�|δ �) =⇒ (�� ∈
In) ∩ (�� ∈→��) =⇒ �� ∈ (In∩ →��), and hence
(In|δ∩ →�|δ �) = (In∩ →��).

(In|δ∩ →�|δ �) ⊆ E|δ\Re|δ =⇒ (In∩ →� �) ⊆ E|δ\Re|δ =⇒ ∀�� ∈

132 Chapter 5. Distribution of DCR Graphs
(In∩ →��)��� �∈ Re|δ .

according to def 5.3.1-iiib : Re|δ = Re ∩ (δE∪ →� δE),
∀�� ∈ (In∩ →� �)��� �∈ Re|δ =⇒ �� �∈ (Re ∩ (δE∪ →� δE)). Fur-
ther, as �� →� �, we know that �� ∈ (δE∪ →� δE). The only way
�� �∈ (Re ∩ (δE∪ →� δE)) becomes true is when �� �∈ Re.

Hence (In|δ∩ →�|δ �) ⊆ E|δ\Re|δ =⇒ (In∩ →��) ⊆ E\Re.

Form (P→G)-A-(i), (P→G)-A-(ii) and (P→G)-A-(iii), we can conclude that
M|δ �G|δ � =⇒ M �G � .

(B) M|δ ⊕G|δ � = M�� =⇒ M ⊕G � = M� ∧ M�
|δ = M��

We have M|δ ⊕G|δ � = M�� in the local graph where M|δ = (Ex|δ � Re|δ � In|δ),
M�� = (Ex��

|δ � Re��
|δ � In��

|δ) and from the def 3.3.8, we can infer
Ex��

|δ = Ex|δ ∪ {�}� Re��
|δ = (Re|δ \ {�})∪ �•→|δ � and In��

|δ = (In|δ∪ �→+|δ
)\ �→%|δ .

In main graph, we know M �G � where M = (Ex� Re� In) and hence we
can workout the new marking as M ⊕G � = M� where M� = (Ex�� Re�� In�)
with Ex� = Ex∪{�}� Re� = (Re\{�})∪ �•→� and In� = (In ∪ �→+)\ �→%.

We have to prove that M�� = M�
|δ .

(i) To prove: Ex��
|δ = Ex�

|δ

Let us start with Ex��
|δ

Ex��
|δ = Ex|δ ∪ {�}

= (Ex ∩ E|δ) ∪ {�} from def 5.3.1-iiia
= (Ex ∪ {�}) ∩ (E|δ ∪ {�})
= Ex� ∩ E|δ
= Ex�

|δ
Hence we can conclude that Ex��

|δ = Ex�
|δ .

(ii) To prove: Re��
|δ = Re�

|δ

(a) According to def 5.3.1-v, the response relation in local graph is
•→|δ=•→ ∩((•→→� δE) × (→� δE)) ∪ ((•→ δE) × δE)).
•→|δ= {(���� ��) | ��� •→ �� ∧ �� ∈ (δE∪ →� δE)} and so
�•→|δ= {�� | � •→ �� ∧ �� ∈ (δE∪ →� δE)}
�•→|δ= {�� | � •→ ��} ∩ {�� | �� ∈ (δE∪ →� δE)}
�•→|δ=�•→ ∩(δE∪ →� δE)

5.3. DCR Graphs - Projection and Composition 133
Let us start with Re��

|δ
Re��

|δ = (Re|δ \ {�})∪ �•→|δ
=

�
(Re ∩ (δE∪ →� δE)) \ {�}

�
∪ �•→|δ from def 5.3.1-iiib

=
�
(Re \ {�}) ∩ (δE∪ →� δE)

�
∪ �•→|δ (set relative complements)

=
�
(Re \ {�}) ∩ (δE∪ →� δE)

�
∪ (�•→ ∩(δE∪ →� δE)) using (a)

=
�
(Re \ {�})∪ �•→

�
∩ (δE∪ →� δE)

= Re� ∩ (δE∪ →� δE)
= Re�

|δ according to def 5.3.1-iiib.
Hence we can conclude that Re��

|δ = Re�
|δ .

(iii) To prove: In��
|δ = In�

|δ

(a) According to def 5.3.1-vii, the include relation in projected graph
is
→+|δ=→+ ∩

��
(→+ δE)×δE

�
∪

�
(→+→• δE)×(→• δE

�
∪

�
(→+→�

δE) × (→� δE
��

→+|δ= {(���� ��) | ��� →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ= {�� | � →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ=�→+ ∩(δE∪ →• δE∪ →� δE).

(b) Similarly, according to def 5.3.1-viii, the exclude relation in pro-
jected graph is
→%|δ=→% ∩

��
(→% δE)×δE

�
∪

�
(→%→• δE)× (→• δE

�
∪

�
(→%→�

δE) × (→� δE
��

→%|δ= {(���� ��) | ��� →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ= {�� | � →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ=�→% ∩(δE∪ →• δE∪ →� δE).

Having sub results (a) and (b), let us starts with In��
|δ and show that

it will be equal to the projection over included set from global graph
(In�

|δ).
In��

|δ = (In|δ∪ �→+|δ)\ �→%|δ
from def 5.3.1-iiic, we have In|δ = In ∩ (δE∪ →• δE∪ →� δE) hence,
In��

|δ =
�
(In ∩ (δE∪ →• δE∪ →� δE))∪ �→+|δ

�
\ �→%|δ .

Again using the results (a) and (b), we can rewrite the above expres-
sion as,
In��

|δ =
�
(In ∩ (δE∪ →• δE∪ →� δE)) ∪ (�→+ ∩(δE∪ →• δE∪ →�

δE))
�

\ (�→% ∩(δE∪ →• δE∪ →� δE)).
In��

|δ =
�
(In∪ �→+)∩(δE∪ →• δE∪ →� δE)

�
\(�→% ∩(δE∪ →• δE∪ →�

δE)).
In��

|δ =
�
(In∪ �→+)\ �→%

�
∩ (δE∪ →• δE∪ →� δE).

In��
|δ = (In�) ∩ (δE∪ →• δE∪ →� δE).

134 Chapter 5. Distribution of DCR Graphs
In��

|δ = In�
|δ .

Hence we can conclude that In��
|δ = In�

|δ .
From (P→G)-B-i, (P→G)-B-ii and (P→G)-B-iii, we have proved that Ex��

|δ =
Ex�

|δ , Re��
|δ = Re�

|δ and In��
|δ = In�

|δ and there by we can conclude that
M�� = M�

|δ .

Since we have proved both parts: ((P→G)-A and (P→G)-B), the proposition
for � ∈ δE and � ∈ δL. M|δ �G|δ � ∧ M|δ ⊕G|δ � = M�� =⇒ M �G � ∧ M ⊕G � =
M� ∧ M�

|δ = M�� holds.

Finally, we have proved the proposition in both ways
�
(G→P) and (P→G)

�
, therefore

the proposition: for � ∈ δE and � ∈ δL it holds that M �G �∧M⊕G� = M�∧M�
|δ = M��

if and only if M|δ �G|δ � ∧ M|δ ⊕G|δ � = M�� holds.

Proposition 5.3.2. Let G = (E� M� →•� •→� →�� →+� →%� L� l) be a DCR Graph and
G|δ its projection with respect to a projection parameter δ = (δE� δL). Then, for
� �∈ E|δ it holds that M �G � ∧ M ⊕G � = M� implies M|δ = M�

|δ .

Proof. According to projection definition 5.3.1, � �∈ E|δ =⇒ � �∈ G|δ , therefore there
will not be any change in the marking. Hence M|δ = M�

|δ .

Proposition 5.3.3. Let G = (E� M� →•� •→� →�� →+� →%� L� l) be a DCR Graph and
G|δ its projection with respect to a projection parameter δ = (δE� δL). Then for � ∈ E|δ
(and � �∈ δL) it holds that M �G � ∧ M ⊕G � = M� implies M|δ ⊕G|δ � = M�

|δ .

Proof. The proof for this proposition is more or less similar to proof in the part (P→G)-
(B) of proposition 5.3.1 with minor changes.

We have M ⊕G � = M� where M = (Ex� Re� In) and M� = (Ex�� Re�� In�) and from
the def 3.3.8, we can infer
Ex� = Ex ∪ {�}� Re� = (Re \ {�})∪ �•→� and In� = (In ∪ �→+)\ �→%.

In projected graph, we have marking projected from global graph, according to def 5.3.1
as M|δ = (Ex|δ � Re|δ � In|δ). The result of executing event � in projected graph will be
a marking, let us say M��

|δ = M|δ ⊕G|δ �, then we have to prove that M��
|δ = M�

|δ .

Let us say that M��
|δ = (Ex��

|δ � Re��
|δ � In��

|δ), and since in the projected graph we have
M��

|δ = M|δ ⊕G|δ �, we can infer from the def 3.3.8, Ex��
|δ = Ex|δ ∪ {�}� Re��

|δ =
(Re|δ \ {�})∪ �•→|δ � and In��

|δ = (In|δ ∪ �→+|δ)\ �→%|δ .

In order to prove this equivalence of M��
|δ = M�

|δ , we will show that Ex��
|δ = Ex�

|δ ,
Re��

|δ = Re�
|δ and In��

|δ = In�
|δ individually as follows,

5.3. DCR Graphs - Projection and Composition 135
(i) To prove: Ex��

|δ = Ex�
|δ

Let us start with Ex��
|δ

Ex��
|δ = Ex|δ ∪ {�}

= (Ex ∩ E|δ) ∪ {�} from def 5.3.1-iiia
= (Ex ∪ {�}) ∩ (E|δ ∪ {�})
= Ex� ∩ E|δ
= Ex�

|δ
Hence we can conclude that Ex��

|δ = Ex�
|δ .

(ii) To prove: Re��
|δ = Re�

|δ

(a) According to def 5.3.1-v, the response relation in local graph is
•→|δ=•→ ∩((•→→� δE) × (→� δE)) ∪ ((•→ δE) × δE)).
•→|δ= {(���� ��) | ��� •→ �� ∧ �� ∈ (δE∪ →� δE)} and so
�•→|δ= {�� | � •→ �� ∧ �� ∈ (δE∪ →� δE)}
�•→|δ= {�� | � •→ ��} ∩ {�� | �� ∈ (δE∪ →� δE)}
�•→|δ=�•→ ∩(δE∪ →� δE)

Let us start with Re��
|δ

Re��
|δ = (Re|δ \ {�})∪ �•→|δ

=
�
(Re ∩ (δE∪ →� δE)) \ {�}

�
∪ �•→|δ from def 5.3.1-iiib

=
�
(Re \ {�}) ∩ (δE∪ →� δE)

�
∪ �•→|δ (set relative complements)

=
�
(Re \ {�}) ∩ (δE∪ →� δE)

�
∪ (�•→ ∩(δE∪ →� δE)) using (a)

=
�
(Re \ {�})∪ �•→

�
∩ (δE∪ →� δE)

= Re� ∩ (δE∪ →� δE)
= Re�

|δ according to def 5.3.1-iiib.
Hence we can conclude that Re��

|δ = Re�
|δ .

(iii) To prove: In��
|δ = In�

|δ

(a) According to def 5.3.1-vii, the include relation in projected graph is
→+|δ=→+ ∩

��
(→+ δE) × δE

�
∪

�
(→+→• δE) × (→• δE

�
∪

�
(→+→�

δE) × (→� δE
��

→+|δ= {(���� ��) | ��� →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ= {�� | � →+ �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→+|δ=�→+ ∩(δE∪ →• δE∪ →� δE).

(b) Similarly, according to def 5.3.1-viii, the exclude relation in projected graph
is
→%|δ=→% ∩

��
(→% δE)×δE

�
∪

�
(→%→• δE)× (→• δE

�
∪

�
(→%→� δE)× (→�

136 Chapter 5. Distribution of DCR Graphs
δE

��

→%|δ= {(���� ��) | ��� →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ= {�� | � →% �� ∧ �� ∈ (δE∪ →• δE∪ →� δE)}
�→%|δ=�→% ∩(δE∪ →• δE∪ →� δE).

Having sub results (a) and (b), let us starts with In��
|δ and show that it will be

equal to the projection over included set from global graph (In�
|δ).

In��
|δ = (In|δ∪ �→+|δ)\ �→%|δ

from def 5.3.1-iiic, we have In|δ = In ∩ (δE∪ →• δE∪ →� δE) hence,
In��

|δ =
�
(In ∩ (δE∪ →• δE∪ →� δE))∪ �→+|δ

�
\ �→%|δ .

Again using the results (a) and (b), we can rewrite the above expression as,
In��

|δ =
�
(In ∩ (δE∪ →• δE∪ →� δE)) ∪ (�→+ ∩(δE∪ →• δE∪ →� δE))

�
\ (�→%

∩(δE∪ →• δE∪ →� δE)).
In��

|δ =
�
(In∪ �→+) ∩ (δE∪ →• δE∪ →� δE)

�
\ (�→% ∩(δE∪ →• δE∪ →� δE)).

In��
|δ =

�
(In∪ �→+)\ �→%

�
∩ (δE∪ →• δE∪ →� δE).

In��
|δ = (In�) ∩ (δE∪ →• δE∪ →� δE).

In��
|δ = In�

|δ .
Hence we can conclude that In��

|δ = In�
|δ .

From (i), (ii) and (iii), we have proved that Ex��
|δ = Ex�

|δ , Re��
|δ = Re�

|δ and In��
|δ = In�

|δ
and there by we can conclude that M�� = M�

|δ .

Therefore the proposition: for � ∈ E|δ (and � �∈ δL) it holds that M �G �∧M⊕G� = M�

implies M|δ ⊕G|δ � = M�
|δ is proved.

5.3.2 Composition

Now we define the binary composition of two DCR Graphs. Intuitively, the composi-
tion of G1 and G2 glues together the events that are both in G1 and G2.

Definition 5.3.3. Formally, the composite G1 ⊕ G2 = (E� M� →•� •→� →�� →+� →%
� L� l), where G� = (E�� M�� →•�� •→�� →��� →+�� →%�� L�� l�), M� = (Ex�� Re�� In�) for � ∈
{1� 2} and:

(i) E = (E1 ∪ E2)

(ii) M = (Ex� Re� In), where:

(a) Ex = Ex1 ∪ Ex2

(b) In = In1 ∪ In2

(c) Re = Re1 ∪ Re2

(iii) →=→1 ∪ →2 for each →∈ {→•� •→� →�� →+� →%}

(iv) l(�) = l1(�) ∪ l2(�)

5.3. DCR Graphs - Projection and Composition 137
(v) L = L1 ∪ L2

(iib) states that events are included, if they’re either included in G1 or G2. (iic)
states that the events with pending responses are those events that have a pending
response in G1 or G2.

Definition 5.3.4. The composition G1 ⊕ G2 is well-defined when:

(i) ∀(� ∈ E1 ∩ E2 | (� ∈ Ex1 ⇔ � ∈ Ex2)

(ii) ∀(� ∈ E1 ∩ E2 | (� ∈ In1 ⇔ � ∈ In2)

(iii) ∀(� ∈ E1 ∩ E2 | (� ∈ Re1 ⇔ � ∈ Re2)

(iv) ∀(�� �� ∈ E1 ∩ E2 | ¬((� →+1 �� ∧ � →%2 ��) ∨ (� →%1 �� ∧ � →+2 ��)))

(i) ensures that those events that will be glued together have the same execution
marking. (ii) ensures that events that will be glued together and in both DCR Graphs
belong to either the set of internal events or the set of events that have a condi-
tion/milestone relation towards an internal event, have the same inclusion marking.
(iii) ensures that events that will be glued together and in both DCR Graphs belong to
the set of internal events have the same pending response marking. (iv) ensures that
by composing the two DCR Graphs no event both includes and excludes the same
event. If G1 ⊕ G2 is well-defined, then we also say that G1 and G2 are composable
with respect to each other.

Lemma 5.3.1. If (L� ·) is a commutative monoid, then the composition operator ⊕ is
commutative.

Proof. According to definition 5.3.3, most elements of the tuple defining the graph
G = G1 ⊕ G2 are constructed from the union of the same elements in G1 and G2.
For these elements the composition is commutative, because the union operator is
commutative. The exception is the labelling function, which is composed through the
monoid operator ·. If the monoid is commutative then the composition is commutative
for the labelling function as well.

Lemma 5.3.2. The composition operator ⊕ is associative.

Proof. According to definition 5.3.3, most elements of the tuple defining the graph
G = G1 ⊕ G2 are constructed from the union of the same elements in G1 and G2.
For these elements the composition is associative, because the union operator is
associative. The exception is the labelling function, which is composed through the
monoid operator ·. Because a monoid operator is always associative, the composition
is associative for the labelling function as well.

Definition 5.3.5. We call a vector ∆ = δ1 � � � δ� of projection parameters covering for
some DCR Graph G = (E� M� →•� •→� →�� →+� →%� L� l) if:

138 Chapter 5. Distribution of DCR Graphs
1.

�

�∈[�]
δE� = E and

2. (∀� ∈ L�∀� ∈ E�� ∈ l(�) ⇒ (∃� ∈ [�]�� ∈ δE� ∧ � ∈ δL�)

Proposition 5.3.4. If some vector ∆ = δ1 � � � δ� of projection parameters is covering
for some DCR Graph G then:

�

�∈[�]
G|δ� = G

Proof. Since the vector of projection parameters is covering, every event and label is
covered in at least one of the projections. Moreover the definition of composition 5.3.3,
is defined over union of individual components. Hence when all projections are
composed, we will get the same graph and hence

�

�∈[�]
G|δ� = G.

5.3.3 Safe Distributed Synchronous Execution of DCR Graphs

In this section we define networks of synchronously communicating DCR Graphs and
prove the main technical theorem of the paper stating that a network of synchronously
communicating DCR Graphs obtained by projecting a DCR Graph G with respect to
a covering set of projection parameters has the same behavior as the original graph
G.

We now define networks of DCR Graphs and their distributed execution.

Definition 5.3.6. A network of DCR Graphs is a finite vector of DCR Graphs G some-
times written as Π�∈[�]G� or G0G2 � � � G�−1. Assuming G� = (E�� M�� →•�� •→�� →��
� →+�� →%�� L�� l�), we define the set of events of the network by � (Π�∈[�]G�) = ∪�∈[�]E�
and the set of labels of the network by �(Π�∈[�]G�) = ∪�∈[�]L� and we write the network
marking as M = Π�∈[�]M�.

Finally, let �(G) denote the set of network markings of G.

We now define when an event is locally enabled in one of the components. and
the result of executing an event as the same as locally executing the event in all
components of the network sharing the event.

Definition 5.3.7. For a network of DCR Graphs G = Π�∈[�]G� where G� = (E�� M�� →•�
� •→�� →+�� →%�� L�� l�), an event � ∈ � (Π�∈[�]G�) is enabled at a location � in the
distributed marking M = Π�∈[�]M�, written M �G�� �, if it is locally enabled in the �th
dynamic condition response graph, i.e. � ∈ E� ∧ M� �G� �. The result of executing
an event � ∈ � (Π�∈[�]G�) in a marking M ⊕G�

� = M = Π�∈[�]M� is the new marking
M� = Π�∈[�]M�

� where M�
� = M� ⊕G � if � ∈ E� and M�

� = M� otherwise.

Finally, we define executions of networks as follows. An event can be executed if
it is locally enabled in a component where it has assigned at least one label.

5.3. DCR Graphs - Projection and Composition 139
Definition 5.3.8. For a network of DCR Graphs G = Π�∈[�]G� where G� = (E�� M�� →•�
� •→�� →��� →+�� →%�� L�� l�) and M = Π�∈[�]M�, we define an execution of G to be
a (finite or infinite) sequence of tuples {(��� M�� ��� ��� M�

�)}�∈[�] each consisting of a
place �� ∈ [�], a network marking, an event, a label and another network marking
(the result of executing the event) such that M = M0 and ∀� ∈ [�]��� ∈ l�� (��) ∧
M� �G���

�� ∧ M�
� = M� ⊕G �� and ∀� ∈ [� − 1]�M�

� = M�+1. We say the execution is
accepting if ∀� ∈ [�]� � ∈ [�]�

�
∀� ∈ In��� ∩ Re����∃� ≥ ���� = � ∨ � �∈ In�

���)
�
, where

M� = Π�∈[�](Ex���� In���� Re���) and M�
� = Π�∈[�](Ex�

��� � In�
��� � Re�

���).

Now we will define the transition system for a network of DCR Graphs as follows,

Definition 5.3.9. For a network of DCR Graphs G = Π�∈[�]G� where G� = (E�� M�� →•�
� •→�� →��� →+�� →%�� L�� l�) and M = Π�∈[�]M�, we define the corresponding labelled
transition system TS(G) to be the tuple

(�(G)� M� ���(G)� →N)

where ���(G) = � (Π�∈[�]G�) × �(Π�∈[�]G�) is the set of labels of the transition system,
M is the initial marking, and →N⊆ �(G) × ���(G) × �(G) is the transition relation
defined by M (���)−−→N M ⊕G�� � if M �G�� � and � ∈ l�(�).

We define a run �0� �1� � � � of the transition system to be a sequence of labels of
a sequence of transitions M�

(�����)−−−→ M�+1 starting from the initial marking. We define
a run to be accepting (or completed) if for the underlying sequence of transitions
it holds that if ∀� ∈ [�]� � ∈ [�]�

�
∀� ∈ In��� ∩ Re����∃� ≥ ���� = � ∨ � �∈ In�

���)
�
,

where M� = Π�∈[�](Ex���� In���� Re���) and M�
� = Π�∈[�](Ex�

��� � In�
��� � Re�

���). In words, a
run is accepting/completed if no required response event is continuously included
and pending without it happens or become excluded.

Now we define binary relation between a global DCR Graph and a network of
projected DCR Graphs as follows in def 5.3.10.

Definition 5.3.10. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l) and for a covering vector of projection parameters ∆ = δ1 � � � δ�, for a
network of projected graphs where G∆ = Π�∈[�]G|δ�

with G|δ�
= (E|δ�

� M|δ�
� →•|δ�

� •→|δ�
� →�|δ�

� →+|δ�
� →%|δ�

� δL� � �|δ�
) and M∆ = Π�∈[�]M|δ�

, we define the binary relation
between TS(G) and TS(G∆) as � = {(M� Π�∈[�]M|δ�

) | M ∈ �(M)}.

Theorem 5.3.1. For a Dynamic Condition Response Graph G and a covering vector of
projection parameters ∆ = δ1 � � � δ� it holds that TS(G) is bisimilar to TS(G∆), where
G∆ = Π�∈[�]G|δ�

. Moreover, a run is accepting in TS(G) if and only if the bisimilar run
is accepting in TS(G∆).

Proof. For DCR Graph G = (E� M� →•� •→� →�� →+� →%� L� l), the corresponding la-
beled transition system (def 3.3.10) is TS(G) = (�(G)� M0� ���(G)� →) where ���(G) =
E × L is the set of labels of the transition system, M0 is the initial marking, and
→⊆ �(G) × ���(G) × �(G) is the transition relation defined by M (���)−−→ M ⊕G � if

140 Chapter 5. Distribution of DCR Graphs
M �G � and � ∈ l(�).

For a network of projected graphs where G∆ = Π�∈[�]G|δ�
with G|δ�

= (E|δ�
� M|δ�

� →•|δ�
� •→|δ�

� →�|δ�
� →+|δ�

� →%|δ�
� δL� � l|δ�

) and M∆ = Π�∈[�]M|δ�
, the corresponding label

transition system according to def 5.3.9, TS(G∆) = (�(G∆)� M0∆� ���(G∆)� →N) where
���(G∆) = � (Π�∈[�]G|δ�

)×�(Π�∈[�]G|δ�
) is the set of labels of the transition system, M0∆

is the initial marking, and →N⊆ �(G∆) × ���(G∆) × �(G∆) is the transition relation
defined by M∆

(���)−−→N M∆ ⊕G�� � if M∆ �G∆�� � and � ∈ l|δ�
(�).

Here we have to show that T S(G) ∼ TS(G∆). In order to show that both label
transition systems are bisimilar, we have to prove the equivalence of binary relation
�.

According to def 5.3.10, we have the binary relation � = {(M� Π�∈[�]M|δ�
) | M ∈

�(M)} between T S(G) and TS(G∆). In order to show that T S(G) ∼ TS(G∆), we have
to show the following

(A) if M ���−−→ M� in T S(G) then there exists in TS(G∆) a transition M∆
���−−→ M�∆ .

According to def 3.3.10 on execution of an event in DCR Graph, M (���)−−→ M ⊕G �
if M �G � and � ∈ l(�).

According to proposition 5.3.1, for � ∈ δE and � ∈ δL it holds that M �G
� ∧ M ⊕G � = M� ∧ M�

|δ = M�� if and only if M|δ �G|δ � ∧ M|δ ⊕G|δ � = M��.

Hence for M �G �∧M⊕G� = M�, we will have following changes in the distributed
marking,

• According to proposition 5.3.1 for interface events of projections,
for all projections � ∈ [�] where � ∈ δE� and � ∈ δL� will have M|δ�

�G|δ�
� ∧ M|δ�

⊕G|δ�
� = M�

|δ�

• According to proposition 5.3.3 for external events of projections,
for all projections � ∈ [�] where � ∈ E|δ�

(and � �∈ δL�) will have M|δ�
⊕G|δ�

� =
M�

|δ�
.

• According to proposition 5.3.2 for projections where the event does not be-
longs to,
for all projections � ∈ [�] where � �∈ E|δ�

will have M|δ�
= M�

|δ�
.

Based on the above changes in the projections and δE� ⊆ E|δ�
, the new marking

distributed network will be M�∆ = Π�∈[�]M�
|δ�

where M�
|δ�

= M|δ�
⊕G � if � ∈ E|δ�

and M�
|δ�

= M|δ�
otherwise.

The new marking in distributed network M�∆ = Π�∈[�]M�
|δ�

is same as execut-
ing a local event in a projection according to def 5.3.7.

5.3. DCR Graphs - Projection and Composition 141
Hence we can conclude that if M ���−−→ M� in T S(G) then there exists in TS(G∆) a
transition M∆

���−−→ M�∆ .

(B) if M∆
���−−→ M�∆ in TS(G∆) then there exists in T S(G) a transition M ���−−→ M�.

According to definition of labeled transition system for network of DCR Graphs
(def 5.3.9), the M∆

(���)−−→N M∆ ⊕G�� � if M∆ �G�� � and � ∈ l�(�).

Further according to execution of a event in distributed marking (def 5.3.7),
M∆ �G�� �, if there is a locally enabled in the �th dynamic condition response
graph, i.e. � ∈ δE� ∧ M|δ�

�G|δ�
�, � ∈ l|δ�

(�) and result of executing the event in
local component M�

|δ�
= M|δ�

⊕G|δ�
�.

According to proposition 5.3.1, if we have an event enabled with a label in a
projection, then we can have the same event enabled in the global graph i.e.
� ∈ δE and � ∈ δL. M|δ �G|δ � ∧ M|δ ⊕G|δ � = M�� =⇒ M �G � ∧ M ⊕G � =
M� ∧ M�

|δ = M��.

Hence � ∈ δE� ∧ � ∈ l|δ�
(�) ∧ M|δ�

�G|δ�
� ∧ M�

|δ�
= M|δ�

⊕G|δ�
�, =⇒ M �G

� ∧ M ⊕G � = M�, which is a condition for making a transition M (���)−−→ M�.

Therefore we can conclude that if M∆
���−−→ M�∆ in TS(G∆) then there exists in

T S(G) a transition M ���−−→ M�.

By proving the equivalence in both directions, we can conclude that T S(G) ∼
TS(G∆).

We will now prove that a run is accepting in TS(G) if and only if the bisimilar run
is accepting in TS(G∆).

Since TS(G) ∼ TS(G∆), both TS(G) and TS(G∆) will have same runs.

Let’s say that a run in TS(G∆) is accepting. According to def 5.3.9, a run in la-
belled transition system for network of DCR Graphs is accepting if for the underlying
sequence of transitions it holds that if ∀� ∈ [�]� � ∈ [�]�

�
∀� ∈ In��� ∩ Re����∃� ≥ ���� =

�∨� �∈ In�
���)

�
, where M� = Π�∈[�](Ex���� In���� Re���) and M�

� = Π�∈[�](Ex�
��� � In�

��� � Re�
���).

In words, a run is accepting/completed if no required response event is continuously
included and pending without it happens or become excluded.

In the network of projected graphs, ∀� ∈ [�]� � ∈ [�]�
�
∀� ∈ In|δ���

∩ Re|δ���
�∃� ≥

���� = � ∨ � �∈ In�
|δ���

)
�
, where M∆� = Π�∈[�](Ex|δ���

� In|δ���
� Re|δ���

) and

142 Chapter 5. Distribution of DCR Graphs
M�

∆� = Π�∈[�](Ex�
|δ���

� In�
|δ���

� Re�
|δ���

).

According to proposition 5.3.1, if there is an enabled event in the local marking
with label, then we can find the same transition in global graph and moreover we
also have same runs in both TS(G) and TS(G∆).

Hence ∀� ∈ [�]� � ∈ [�]�
�
∀� ∈ In|δ���

∩ Re|δ���
�∃� ≥ ���� = � ∨ � �∈ In�

|δ���
)
�

=⇒
∀� ∈ [�]� � ∈ In� ∩ Re��∃� ≥ ��((� = �� ∨ � �∈ In�

�)), where M� = (Ex�� In�� Re�) and
M� = (Ex� � In� � Re�) in the global graph.

According to definition of LTS for def 3.3.10, a run �0� �1� � � � of the transition sys-
tem to be a sequence of labels of a sequence of transitions M�

(�����)−−−→ M�+1 starting
from the initial marking and a run to be accepting (or completed) if for the under-
lying sequence of transitions it holds that ∀� ≥ 0� � ∈ Re��∃� ≥ ��((� = �� ∨� �∈ In�+1)).

Hence we can conclude from ∀� ∈ [�]� � ∈ In� ∩ Re��∃� ≥ ��((� = �� ∨ � �∈ In�
�)),

where M� = (Ex�� In�� Re�) and M� = (Ex� � In� � Re�) that the run is accepting in TS(G).

Therefore a run is accepting in TS(G) if and only if the bisimilar run is accepting
in TS(G∆).

5.3.4 Distribution of Case Management Example

Figure 5.2 below shows a modified version of case management example in DCR
Graphs taken from the case study described in Sec 4.1.3, primarily focusing on
meeting management and abstracting from the other parts of the case study. As
explained in the case study, the meeting management example involves three par-
ticipants: Landsorganisationen i Danmark (LO) (overarching organization for most of
the trade unions in Denmark), Dansk Arbejdsgiverforening (DA) (Danish employers
organizations) and employees trade union (U).

Figure 5.2: Arrange meeting cross-organizational case management example

5.3. DCR Graphs - Projection and Composition 143
The DCR Graph shown in the figure 5.2 has 7 events, drawn as boxes with "ears",

and captures a process of creating a case, agreeing on meeting dates and holding
meetings. The names of the events are written inside the box and the set of actions
for each event, representing the roles that can execute the event, is written inside the
"ear". That is, the event Create Case in the upper left has label U and represents the
creation of a case by a case manager at a union (role U). The rightmost event, Hold
meeting has two different labels, LO and DA, representing a meeting held by LO and
DA (the umbrella organization of employers) respectively. The formal specification of
global DCR Graph for arrange meeting example (shown in figure 5.2) is given in the
listing 5.1.

(a) Projection Over
Role U

(b) Projection Over Role DA

(c) Projection Over Role LO

Figure 5.3: Projecting of Arrange Meeting Example Over Roles

Listing 5.1: Formal specification of arrange meeting arrangement example

We will use the following abbreviations for the event names in the example.
Create Case(Cc)� Update Case(Uc)� Propose dates-LO(PdLO)�
Propose dates-DA(PdDA)� Accept-LO(ALO)� Accept-DA(ADA)�
Hold meeting(Hm)�

144 Chapter 5. Distribution of DCR Graphs
DCR Graph G = (E� M� →•� •→� →�� →+� →%� L� l) where
E = {Cc� Uc� PdLO� PdDA� ALO� ADA� Hm}
M = (∅� ∅� E)
→•= {(Cc� Uc)� (Cc� PdLO)� (PdLO� PdDA)� (PdLO� ADA)� (PdDA� ALO)�
(ALO� Hm)� (ADA� Hm)}
•→= {(Cc� PdLO)� (PdLO� ADA)� (PdDA� ALO)� (PdLO� Hm)}
→�= ∅
→+= {(PdLO� PdDA)� (PdDA� PdLO)� (PdLO� ADA)� (PdDA� ALO)}
→%= {(Cc� Cc)� (PdLO� PdLO)� (PdDA� PdDA)� (PdLO� ALO)�
(ALO� PdLO)� (PdDA� ADA)� (ADA� PdDA)}

L = {(Cc� U)� (Uc� U)� (PdLO� LO)� (PdDA� DA)� (ALO� LO)� (ADA� DA)�
(Hm� LO)� (Hm� DA)}
l = {(Cc� (Cc� U))� (Uc� (Uc� U))� (PdLO� (PdLO� LO))� (PdDA� (PdDA� DA))�
(ALO� (ALO� LO))� (ADA� (ADA� DA))� (Hm� (Hm� LO))� (Hm� (Hm� DA))}

Now we will project the global DCR graph for arrange meeting over participant
roles (LO, DA, U) and events belongs to them. As shown in the figure, the pro-
jected DCR Graph subgraphs contains both the events internal and interface events
as defined ib the definition 5.3.1. The interface events or external events are marked
without labels (boxes marked with double lines and no ears). Further all the re-
lations between the events that are necessary for the projected graph (as defined
in the definition 5.3.1-iv to 5.3.1-viii) will also be included. The formal specification
of the projected graphs for arrange meeting example worked out according to the
definition 5.3.1 is given below in the listing 5.2.

Listing 5.2: Formal specification of projected DCR graphs for arrange meeting example
Global DCR graph from the listing 5.1 G = (E� M� →•� •→� →�� →+� →%� L� l)

Projection over role U
projection parameter δ = (δE� δL) where
δE = {Cc� Uc} and δL = {(Cc� U)� (Uc� U)}

The projected DCR graph over events and labels belonging to U
G|δ = (E|δ � M|δ � →•|δ � •→|δ � →�|δ � →+|δ � →%|δ � δL� l|δ) where
E|δ = δE = {Cc� Uc}

M|δ = (Ex|δ � Re|δ � In|δ) where
Ex|δ = Ex ∩ E|δ = ∅
Re|δ = Re ∩ (δE∪ →� δE) = ∅
In|δ = In ∩ E|δ = E|δ

→•|δ= {(Cc� Uc)}
•→|δ= ∅
→�|δ= ∅
→+|δ= ∅
→%|δ= {(Cc� Cc)}

l|δ = {(Cc� (Cc� U))� (Uc� (Uc� U))}

Projection over role LO
projection parameter δ = (δE� δL) where

5.3. DCR Graphs - Projection and Composition 145
δE = {PdLO� ALO� Hm} and
δL = {(PdLO� LO)� (ALO� LO)� (Hm� LO)}

The projected DCR graph over events and labels belonging to LO
G|δ = (E|δ � M|δ � →•|δ � •→|δ � →�|δ � →+|δ � →%|δ � δL� l|δ) where

E|δ = {PdLO� ALO� Hm� Cc� PdDA� ADA}

M|δ = (Ex|δ � Re|δ � In|δ) where
Ex|δ = Ex ∩ E|δ = ∅
Re|δ = Re ∩ (δE∪ →� δE) = ∅
In|δ = In ∩ E|δ = E|δ

→•|δ= {(Cc� PdLO)� (PdDA� ALO)� (ALO� Hm)� (ADA� Hm)}
•→|δ= {(Cc� PdLO)� (PdDA� ALO)� (PdLO� Hm)}
→�|δ= ∅
→+|δ= {(PdLO� PdDA)� (PdDA� PdLO)� (PdLO� ADA)� (PdDA� ALO)}
→%|δ=→%

l|δ = {(PdLO� (PdLO� LO))� (ALO� (ALO� LO))� (Hm� (Hm� LO))}

Projection over role DA
projection parameter δ = (δE� δL) where
δE = {PdDA� ADA� Hm} and
δL = {(PdDA� DA)� (ADA� DA)� (Hm� DA)}

The projected DCR graph over events and labels belonging to DA
G|δ = (E|δ � M|δ � →•|δ � •→|δ � →�|δ � →+|δ � →%|δ � δL� l|δ) where

E|δ = {PdDA� ADA� Hm� PdLO� ALO}

M|δ = (Ex|δ � Re|δ � In|δ) where
Ex|δ = Ex ∩ E|δ = ∅
Re|δ = Re ∩ (δE∪ →� δE) = ∅
In|δ = In ∩ E|δ = E|δ

→•|δ= {(PdLO� PdDA)� (PdLO� ADA)� (ALO� Hm)� (ADA� Hm)}
•→|δ= {(PdLO� ADA)� (PdLO� Hm)}
→�|δ= ∅
→+|δ= {(PdLO� PdDA)� (PdDA� PdLO)� (PdLO� ADA)� (PdDA� ALO)}
→%|δ= {(PdLO� PdLO)� (PdDA� PdDA)� (PdLO� ALO)� (ALO� PdLO)�
(PdDA� ADA)� (ADA� PdDA)}

l|δ = {(PdDA� (PdDA� DA))� (ADA� (ADA� DA))� (Hm� (Hm� DA))}

Further, we will use the arrange meeting example from figure 5.3 and show how
events are executed in distributed setting. We assume the arrange meeting example
is projected to a network G1

� || G1
�� || G1

�� of three DCR Graphs as shown in the
figure 5.3 and we use abbreviations for the event names as described in listing 5.1.

1. Using sync step, local input, and input we get the transition G1
� || G1

�� ||

G1
��

(Cc�U)−−−→ G2
� || G1

�� || G2
�� capturing the local execution of the event Cc labelled

146 Chapter 5. Distribution of DCR Graphs
with U in G1

� which is communicated synchronously to G1
��. This updates the

markings by adding the event Cc to the set of executed events in both G1
� and

G1
��. But since Cc has an exclude relation to itself in both G1

� and G1
�� (see

Fig. 5.2(a) and 5.2(c)), the event is also excluded from the set of included events
in both markings. Finally, because of the response relation to the event PdLO
in G1

�� (see Fig. 5.2(c)), the event PdLO is added to the set of required responses
in the resulting marking G2

��.

2. We can now execute the event PdLO in the DCR graph G2
�� concurrently with

the event Uc in DCR graph G2
�.

As the event Uc is only local to G2
� we get by using local step the transition

G2
� || G1

�� || G2
��

(Uc�U)−−−−→ G3
� || G1

�� || G2
�� that only updates the marking of G2

�.
In addition to being local to G2

��, the event PdLO is also external event in graph
G1

��, so as in the first step by using sync step local input, and input we get

the transition G3
� || G1

�� || G2
��

(PdLO�LO)−−−−−−→ G3
� || G2

�� || G3
��, where the event

PdLO has been added to the executed event set of both the marking of G1
��

and G2
��. Again, because of the self-exclusion relations, the event PdLO is also

excluded from the sets of included events in the two markings, and because of
the response relations, the events ADA and Hold meeting are added to the set
of pending responses in G1

�� and the event Hold meeting is added to the set of
pending responses in G2

��.

3. In response to the dates proposed by LO, the DA may choose to propose new
dates by executing the event PdDA in the graph graph G2

��.

G3
� || G2

�� || G3
��

(PdDA�DA)−−−−−−→ G3
� || G3

�� || G4
�� This triggers the exclusion of the

events PdDA and ADA and the inclusion of the events PdLO and ALO in the
markings of both G2

�� and G3
��. It will also include the event ALO in the required

response set in the resulting marking G4
��.

4. Now LO may choose to accept the new dates proposed by DA by executing the
event ALO in the graph graph G4

��, giving the transition

G3
� || G3

�� || G4
��

(ALO�LO))−−−−−→ G3
� || G4

�� || G5
��. This records the event ALO as

executed in markings of both G4
�� and G5

�� and excludes PdLO in both markings
(i.e. it is not possible to propose new dates after acceptance).

5. Since the event ALO is recorded as executed in markings of both G4
�� and G5

��
and the event ADA is excluded, the hold meeting event Hold meeting will be
enabled in both graphs G5

�� and G4
��. The LO may choose to hold the meeting,

giving the transition G3
� | ⇤G4

�� || G5
��

(Hold meeting�LO)−−−−−−−−−−−→ G3
� || G5

�� || G6
��

Note that this event is also communicated to DA, added to the set of executed
events and removed from the set of pending responses. Since there are no
pending responses in any of the local graphs the finite run is in an accepting
state.

5.4. Distribution of Nested DCR Graphs 147
5.4 Distribution of Nested DCR Graphs

In this section, we define the notion of projection of a nested DCR Graphs, restricting
the graph to a subset of the events, and also we define a technique for distributing a
nested DCR Graph as a set of local nested DCR Graphs obtained as projections and
communicating by notifications of event executions.

5.4.1 Projections

A nested DCR Graph G is projected with respect to a projection parameter δ =
(δE� δL), where δE ⊆ E is a subset of the events of G satisfying that ⇤(δE) ⊆ δE, i.e.
the subset is closed under the super event relation, and δL ⊆ L is a subset of the
labels. The intuition is that the graph is restricted to only those events and relations
that are relevant for the execution of events in δE and the labeling is restricted to the
set δL. The technical difficulty is to infer the events and relations not in δE, referred
to as external events below, that should be included in the projection because they
influence the execution of the workflow restricted to the events in δE.

The formal definition of projection for nested DCR Graphs is given in 5.4.1 below.
It generalizes the definition of projection introduced in [Hildebrandt et al. 2011d] for
DCR Graphs to support nesting and milestones.Definition 5.4.1. If G = (E�⇤� M� →•� •→� →�� →+� →%� L� �) then G|δ = (E|δ �⇤|δ � M|δ � →•|δ
� •→|δ � →�|δ � →+|δ � →%|δ � δL� �|δ) is the projection of G with respect to δ ⊆ E where:

(i) E|δ =→ δE, for →=
�

�∈C
�, and C = {id, →•�, •→�, →��, →+�, →%�, •→�→��,

→+�→•�, →%�→•�, →+�→��, →%�→�� }

(ii) ⇤|δ (�) = ⇤(�), if � ∈ E|δ

(iii) ł|δ (�) =
�

l(�) ∩ δL if � ∈ δE

∅ if � ∈ E|δ\δE

(iv) M|δ = (Ex|δ � Re|δ � In|δ) where:

(a) Ex|δ = Ex ∩ E|δ

(b) Re|δ = Re ∩ (δE ∪ →��δE)
(c) In|δ = In ∩ (δE ∪ →•�δE ∪ →��δE)

(v) →•|δ=→• ∩((→•�δE) × δE)

(vi) •→|δ=•→ ∩((•→�→��δE) × (→��δE)) ∪ ((•→�δE) × δE))

(vii) →�|δ=→� ∩((→��δE) × δE)

(viii) →+|δ=→+ ∩
��

(→+�δE) × δE
�

∪
�
(→+�→•�δE) × (→•�δE

�
∪

�
(→+�→��δE) ×

(→��δE
��

148 Chapter 5. Distribution of DCR Graphs
(ix) →%|δ=→% ∩

��
(→%�δE)×δE

�
∪

�
(→%�→•�δE)×(→•�δE

�
∪

�
(→%�→��δE)×(→��δE

��

(i) defines the set of events in the projection as all events that has a relation
pointing to an event in the set δE, where the relation is either the identity relation
(i.e. it is an event in δE), one of the core relations (flattened) or the relations such
as •→�→�� which includes all events that triggers as a response some event that
is a milestone to an event in δE or the relations that include/exclude conditions and
milestones to an event in the set δE.

Events in E|δ\δE are referred to as external events and will be included in the
projection without labels, as can be seen from the definition of the labeling function
in (iii). As we will formalize below, events without labels can not be executed by a
user locally. However, when composed in a network containing other processes that
can execute these events, their execution will be communicated to the process.

(iv) defines the projection of the marking: The executed set is simply restricted to
the events in E|δ . Further, the included event set is restricted to events in projection
parameter (δE) plus condition and milestone events to events in projection parameter.
Finally the responses are restricted to events in δE and events that have a milestone
relation to an event in δE because these are the only responses that will affect the
local execution of the projected graph. Note that these events will by definition be
events in E|δ but may be external events.

Finally, (v) - (ix) state which relations should be included in the projection. For
the events in δE all incoming relations should be included. Additionally response
relations to events that are a milestone for an event in δE are included as well.

To define networks of communicating nested DCR Graphs and their semantics
we use the following extension of a nested DCR Graph adding a new label to every
event.

Definition 5.4.2. For an DCR Graph G = (E�⇤� M� →•� •→� →�� →+� →%� L� �) define
Gε = (E�⇤� M� →•� •→� →�� →+� →%� L ∪ {ε}� �ε), where �ε = �(�) ∪ {ε} (assuming
that ε �∈ L).

We are now ready to state the key correspondence between global execution of
events and the local execution of events in a projection.

Proposition 5.4.1. Let G = (E�⇤� M� →•� •→� →�� →+� →%� L� �) be a nested DCR Graph
and G|δ its projection with respect to a projection parameter δ = (δE� δL). Then and
G|δ its projection with respect to a projection parameter δ = (δE� δL). Then

1. for � ∈ δE and � ∈ δL it holds that M �G � ∧ M ⊕G � = M� ∧ M�
|δ = M�� if and

only if M|δ �G|δ � ∧ M|δ ⊕G|δ � = M��,

2. for � �∈ E|δ it holds that M �G � ∧ M ⊕G � = M� implies M|δ = M�
|δ ,

3. for � ∈ E|δ (and � �∈ δL) it holds that M �G �∧M⊕G� = M� implies M|δ ⊕G|δ � =
M�

|δ .

5.4. Distribution of Nested DCR Graphs 149
Proof. According to definition when an event is enabled and the result of executing
an event for nested DCR Graphs 4.1.4,
an event in nested graph is enabled if it is enabled in the flattened graph. M � G �,
if M �G� �

Similarly, the result of executing M ⊕G � same as executing the event in flattened
graph and it is defined as: M ⊕G� � = (Ex� Re� In) ⊕G� �.

Moreover the marking M of a nested DCR Graph is same as its flattened DCR Graph.

Hence the above 3 propositions for a nested DCR Graph can be proved based on
the similar lines as those propositions for a DCR Graph (propositions 5.3.1, 5.3.2 and
5.3.3).

5.4.2 Distributed Execution in Nested DCR Graphs

Intuitively, a vector of projection parameters is covering if every event is included in
at least one projection parameter and every label that is assigned to an event occurs
at least once together with that event.

Definition 5.4.3. We call a vector ∆ = (δ1� � � � � δ�) of projection parameters covering
for some DCR Graph G = (E�⇤� M� →•� •→� →�� →+� →%� L� l) if:

1.
�

�∈[�]
δE� = E and

2. (∀� ∈ L�∀� ∈ E�� ∈ l(�) ⇒ (∃� ∈ [�]�� ∈ δE� ∧ � ∈ δL�)

The marking of nested DCR Graph is same as marking of its flattened DCR Graph
(def 4.1.4) and furthermore the network semantics of DCR Graphs are defined based
markings of networks. Therefore the network of nested DCR Graphs is same as
the network of DCR Graphs, and hence we use the same definitions on network of
DCR Graphs (def 5.3.6, 5.3.7, 5.3.8 and 5.3.9).

We now give the main technical theorem stating that a network of nested DCR Graphs
obtained by projecting a nested DCR Graph G with respect to a covering vector of
projection parameters has the same behavior as the original graph G. Thm. 5.4.1 be-
low now states the correspondence between a nested DCR Graph and the network
of nested DCR Graphs obtained from a covering projection.

Theorem 5.4.1. For a nested DCR Graph G and a covering vector of projection
parameters ∆ = (δ1� � � � � δ�) it holds that T S(G) is bisimilar to T S(G∆), where
G∆ = Π�∈[�]G|δ�

. Moreover, a run is accepting in T S(G) if and only if the bisimi-
lar run is accepting in T S(G∆).

Proof. The marking of nested DCR Graph is same as marking of its flattened DCR Graph
(def 4.1.4). Furthermore the labeled transition system T S(G) for nested DCR Graph

150 Chapter 5. Distribution of DCR Graphs
(def 4.1.5) is defined in terms of markings, which is same for both nested DCR Graph
and its flattened DCR Graph.

The labeled transition system (T S(G∆)) for network of projected nested DCR Graphs
is same as network of projected DCR Graphs.

Therefore using proposition 5.4.1 and following the theorem 5.3.1 we can easily prove
that T S(G) ∼ T S(G∆).

Similarly following the theorem 5.3.1, we can also prove that a run is accepting
in T S(G) if and only if the bisimilar run is accepting in T S(G∆) as the accepting
condition for a run only depends on the markings of nested DCR Graph, which is
same as its flattened DCR Graph.

The generality of the distribution technique given above allows for fine tuned
projections where we select only a few events for a specific role and actor, but in
most cases the parameter is likely to be chosen so that the projected graph shows
the full responsibilities of a specific role or actor. A set of nested DCR Graphs
can be maintained and executed in a distributed fashion, meaning that there is a
separate implementation for every graph and that the execution of shared events is
communicated between them. Through the distributed execution of projected graphs,
nested DCR Graphs can be used as a (declarative) choreography model to the line
of work (on typed imperative process models) in [Carbone et al. 2007]: The original
graph can be seen as the choreography, describing how the system as a whole should
function, from which we project multiple end-points for individual roles or actors that
can be implemented independently.

5.4.3 Distribution of Healthcare Workflow

In Fig. 5.4 below we show the graphical representation of the nested Dynamic Condi-
tion Response Graph formalizing a variant of the oncology workflow studied in [Lyng
et al. 2008]. In this section we informally describe the formalism and the distribution
technique formalized in the previous section using the example workflow.

As explained before, the boxes denote activities (also referred to as events in the
following sections). Administer medicine is a nested activity having sub activities give
medicine and trust. Give medicine is an atomic activity, i.e. it has no sub activities.
Trust is again a nested activity having sub activities sign nurse 1 and sign nurse 2.
Finaly, medicine preparation is a nested activity having seven sub activities dealing
with the preparation of medicine. An activity may be either included or excluded, the
latter are drawn as a dashed box as e.g. the edit and cancel activities.

A run of the workflow consists of a (possibly infinite) sequence of executions of
atomic activities. (A nested activity is considered executed when all its sub activities
are executed). An activity can be executed any number of times during a run, as long

5.4. Distribution of Nested DCR Graphs 151

Figure 5.4: Oncology Workflow as a nested DCR Graph

as the activity is included and the constraints for executing it are satisfied, in which
case we say the activity is enabled.

The constraints and dynamic exclusion and inclusion are expressed as five differ-
ent core relations between activities represented as arrows in the figure above: The
condition relation, the response relation, the milestone relation, the include relation,
and the exclude relation. The condition relation is represented by an orange arrow
with a bullet at the arrow head. E.g. the condition relation from the activity sign doc-
tor to the activity don’t trust prescription(N) means that sign doctor must have been
executed at least once before the activity don’t trust prescription(N) can be executed.

The response relation is represented by a blue arrow with a bullet at its source.
E.g. the response relation from the activity prescribe medicine to the activity give
medicine means that the latter must be executed (at some point) after (any execution
of) the activity prescribe medicine. We say that a workflow is in a completed state
if all such response constraints have been fulfilled (or the required response activity
is excluded). However, note that a workflow may be continued from a completed

152 Chapter 5. Distribution of DCR Graphs
state and change to a non-completed state if an activity is executed that requires
another response or includes an activity which has not been executed since it was
last required as a response. Also note that the response constraint may cause some
infinite runs to never pass through a complete state if the executed activities keep
triggering new responses.

The third core relation used in the example is the milestone relation represented
as a dark red arrow with a diamond at the arrow head. The milestone relation
was introduced in [Hildebrandt et al. 2011c] jointly with the ability to nest activities.
A relation to and/or from a nested activity simply unfolds to relations between all
sub activities. A milestone relation from a nested activity to another activity then
in particular means that the entire nested activity must be in a completed state
before that activity can be executed. E.g. medicine preparation is a milestone for the
activity administer medicine, which means that none of the sub activities of administer
medicine can be carried out if any one of the sub activities of medicine preparation
is included and has not been executed since it was required as a response.

Two activities can be related by any combination of these relations. In the graph-
ical notation we have employed some shorthands, e.g. indicating the combination of
a condition and a response relation by and arrow with a bullet in both ends.

Finally, DCR Graphs allow two relations for dynamic exclusion and dynamic
inclusion of activities represented as a green arrow with a plus at the arrow head
and a red arrow with a minus at the arrow head respectively. The exclusion relation
is used in the example between the cancel activity and the treatment activity. Since
all other activities in the workflow are sub activities of the treatment activity this
means that all activities are excluded if the cancel activity is executed. The inclusion
relation is used between the prescribe medicine activity and the manage prescription
activity.

The run-time state of a nested DCR Graph can be formally represented as a pair
(Ex� Re� In) of sets of atomic activities (referred to as the marking of the graph). The
set Ex is the set of atomic activities that have been executed at least once during
the run. The set R� is the set of atomic activities that, if included, are required to be
executed at least one more time in the future as the result of a response constraint
(i.e. they are pending responses). Finally, the set I� denotes the currently included
activities.

The set Ex thus may be regarded as a set of completed activities, the set Re as
the set of activities on the to-do list and the set In as the activities that are currently
relevant for the workflow.

Note that an activity may be completed once and still be on the to-do list, which
simply means that it must be executed (completed) again. This makes it very simple
to model the situation where an activity needs to be (re)considered as a response
to the execution of an activity. In the oncology example this is e.g. the case for the
response relation between the don’t trust prescription(N) activity (representing that
a nurse reports that he doesn’t trust the prescription) and the sign doctor activity.
The effect is that the doctor is asked to reconsider her signature on the prescription.
In doing that she may or may not decide to change the prescription, i.e. execute

5.4. Distribution of Nested DCR Graphs 153
prescribe medicine again.

We indicate the marking graphically by adding a check mark to every atomic
activity that has been executed (i.e. is included in the set Ex of the marking), an
exclamation mark to every atomic activity which, if included, is required to be executed
at least once more in the future (i.e. is included in the set Re), and making a box
dashed if the activity is not included (i.e. is not included in the set In of the marking).
In Fig. 5.4 we have shown an example marking where prescribe medicine has been
executed. This has caused manage prescription and its sub activities edit and cancel
to be included, and sign doctor and give medicine to be required as responses, i.e the
two activities are included in the set Re of the marking (on the to-do list).

Figure 5.5: Projection over doctor’s role (D)

As described above, an activity can be executed if it is enabled. Sign doctor
is enabled for execution in the example marking, since its only condition (prescribe
medicine) has been executed and it has no milestones. Give medicine on the other
hand is not enabled since it has the (nested) activity trust as condition, which means
that all sub activities of trust (sign nurse 1 and sign nurse 2) must be executed before
give medicine is enabled. Also, both give medicine and trust are sub activities of
administer medicine which further has sign doctor as condition and milestone, and
medicine preparation as milestone. The condition relation from sign doctor means
that the prescription must be signed before the medicine can be administered. The
milestone relations means that the medicine can not be given as long as sign doctor
or any of the sub activities of medicine preparation is on the to-do list (i.e. in the set
Re of pending responses).

Every activity should not be available to any user of the workflow system. For
this reason the commercial implementation of the workflow management system pro-
vided by Resultmaker employs a role based access control, assigning to every atomic
activity a finite set of roles and assigning to every role a set of access rights con-
trolling if the activity is invisible or visible to users fulfilling the role. If an activity
is visible it is specified wether the role are allowed to execute the activity or not.

154 Chapter 5. Distribution of DCR Graphs
Users are either statically (e.g. by login) or dynamically assigned to roles (e.g. by
email invitation).

Figure 5.6: Projection over nurse role (N and N1)

In the formalization presented in previous section, the assigned roles are given as
part of the name of the activity. In the graphical representation we have shown the
roles within small "ears" on the boxes. In the example workflow we have the following
different roles: Doctor (D), Controlling Pharmacist (CP), Pharmacist Assistant (PA)
and Nurse (N). Hereto comes roles N1 and N2 which must dynamically be assigned
to two different authorized persons (nurses or doctors). This is at present the only
way to implement the constraint stating that two different authorized persons must
sign the product prepared by the pharmacists before the medicine is administered
to the patient. Future work will address less ad hoc ways to handle these kind of
constraints between activities referring to the identify of users.

The technique for distributing DCR Graphs introduced in [Hildebrandt et al. 2011d]
and extended in the present paper is a first step towards supporting this kind of split-
ting of workflow definitions. Given any division of activities on local units (assigning
every activity to at least one unit) it describes how to derive a set of graphs, one for
each unit, describing the local part of the workflow. Such a local process, referred
to as a projection is again a DCR Graph. It includes the activities assigned to the
unit but also the relevant external activities executed within other units for which an
event must be send to the local process when they are executed. An example of a
projection relative to the activities assigned the doctor role (D) is given in Fig. 5.5.
The diagram shows that the projection also includes the two external activities (in-
dicated as double line boxes) don’t trust prescription (N) and don’t trust prescription

5.4. Distribution of Nested DCR Graphs 155

Figure 5.7: Projection over control pharmacist role (CP)

Figure 5.8: Projection over pharmacy assistant role (PA)

(CP). These two activities, representing respectively a nurse and a controlling phar-
macist reporting that the prescription is not trusted, are the only external activities
that may influence the workflow of the doctor by requiring sign doctor as a response.

156 Chapter 5. Distribution of DCR Graphs
Similarly, Fig. 5.6,5.7, and 5.8 shows projections corresponding to the nurse, control-
ling pharmacist, and pharmacist assistant roles. However, if for instance the roles of
the controlling pharmacist and the pharmacist assistant are always assigned to the
same persons one may instead choose to keep all these activities together in a unit.
This can be obtained by simply projecting on all activities assigned either the CP or
the PA role.

For instance, Fig. 5.5 shows the projection with respect to the projection parameter
(δE� δL) where δE={manage prescription, edit, cancel, prescribe medicine, sign doctor}
and δL={(edit, D), (cancel, D), (prescribe medicine, D), (sign doctor, D)}. The two events
don’t trust prescription (N) and don’t trust prescription (CP) shown with double line
borders are external events included in the projected graph even though they don’t
appear in the projection parameter. It is interesting to note that the doctor only needs
to be aware of these two activities carried out by other participants. In comparison,
the projection over the roles for nurses (N and N1) contains all the events since
they may influence (because of the milestone relations) the execution of the events
with roles N and N1. In other words, the doctors can carry out workflows highly
independent of the other activities while the nurses are dependent on any event
carried out by the other roles.

5.5 Summary

In this chapter, we have given a general technique for distributing a declarative
(global) process as a network of synchronously communicating (local) declarative
processes and proven the global and distributed execution to be equivalent using
the DCR Graphs. Our method is based on top-down model-driven approach and
addressed the challenging distributed synthesis problem: Given a global model and
some formal description of how the model should be distributed, can we synthesize
a set of local processes with respect to this distribution which are consistent to the
the global model?

In order to safely distribute a DCR Graph, we have defined a general notion of
projection on the DCR Graphs relative to a subset of labels and events in the sec-
tion 5.3. Here is the key challange is to identify the set of events that must be
communicated from other processes in the network in order for the state of the local
process to stay consistent with the global specification. Further, in order to enable
the reverse operation, building global graphs from local graphs, we have defined
the composition of two DCR Graphs, essentially by gluing joint events. As a sanity
check, we then proved that if we have a collection of projections of a DCR Graph
that is covering the original graph, then the composition yields back the same graph
in Sec. 5.3.2. We then finally proved to the main technical result, defining networks
of synchronously communicating DCR Graphs and stating (in Thm. 5.3.1, Sec. 5.3.3)
the correspondence between a global process and a network of communicating DCR
Graphs obtained from a covering projection. Further, we have exemplified the distri-
bution technique on a simple cross-organizational process identified within a case

5.5. Summary 157
study (in Sec. 5.3.4) carried out jointly with our industrial partner Exformatics A/S us-
ing DCR Graphs for model-driven design and engineering of an inter-organizational
case management system.

Moreover, we have extended the safe distribution technique to Nested DCR Graphs
in Sec. 5.4 by distributing a nested DCR Graph as a set of local nested DCR Graphs
obtained as projections and communicating by notifications of event executions. Fur-
ther, we have also exemplified the distribution technique of Nested DCR Graphs on a
healthcare workflow identified during a previous field study at Danish hospitals [Lyng
et al. 2008], which was introduced in Sec. 2.1.3.

Finally, the generality of the distribution technique given in this chapter allows
for fine tuned projections where we select only a few events for a specific role and
actor, but in most cases the parameter is likely to be chosen so that the projected
graph shows the full responsibilities of a specific role or actor. Our distribution
technique is quite generic and the strength of distribution lies in the fact that the
resulting local components are also DCR Graphs, which keep their declarative nature,
therefore they can be further distributed.

Chapter 6Formal Verification, Tools andImplementation
In this chapter, we will describe the prototype implementation and tools built around
the theory of DCR Graphs to demonstrate the usage of our formal model in modeling
the business processes and workflows. In addition to this, we will also define safety
and liveness properties on the DCR Graphs formally, using the notion of runs and
accepting runs defined on markings of the graph. Further, we will also describe a
method to encode DCR Graphs and use formal verification methods to verify these
properties using SPIN [Holzmann 1997, Holzmann 2004] model checking tool.

First, we will introduce the notion of safety and liveness on DCR Graphs and
define corresponding properties in terms markings of a DCR Graph in Sec. 6.2. In
Sec. 6.3, first we will give a brief introduction to SPIN tool and its modeling language
PROMELA [Spin 2007], then we will describe a method to encode DCR Graphs into
PROMELA, to verify safety and liveness properties in SPIN. Further, we will briefly
mention our experience with verification of safety properties on DCR Graphs using
Zing [Andrews et al. 2004, Fournet et al. 2004] model checker developed by Microsoft
Research. Finally, we will give a overview about tools and implementation that were
built around our formal model in the Sec 6.5.

6.1 Related Work

Verification of business processes based on a wide range formal specification models,
has been studied in the last couple of decades. First of all, many researchers have
studied the problem of formalization and verification of business processes modeled
using UML activity diagrams. The authors in [Eshuis 2002, Eshuis & Wieringa 2004]
have studied semantics of UML activity diagrams by mapping them to clocked tran-
sition system (CTS) [Kesten et al. 1996] and explored formal verification of UML dia-
grams based on their implementation of model checker and also using NuSMV [Cimatti
et al. 2000] symbolic model checker. Further the authors in [Guelfi et al. 2004, Guelfi
& Mammar 2005] have given formal semantics for UML timed activity diagrams and
translated them to PROMELA [Spin 2007] language to do the formal verification with
the help of SPIN [Holzmann 1997, Holzmann 2004, Spin 2008, Ben-Ari 2008] model
checker. The work on UML Statechart Diagrams [Latella & Massink 2001, Latella
et al. 1999] studied the formal verification on behavioral subset of UML state charts
using SPIN model checker, where as the PhD thesis [Porres 2001] on Modeling and
Analyzing Software Behavior in UML, gave formal semantics to UML statecharts and

160 Chapter 6. Formal Verification, Tools and Implementation
provided a method to verify them using vUML [Lilius & Paltor 1999] tool. Finally the
authors in [Knapp et al. 2002] used a different approach and provided verification
support for the timed state machines of a UML model, by compiling them into timed
automata to verify models using UPPAAL [Larsen et al. 1997] model checker.

Petri nets [Reisig 1991, Brauer et al. 1987] is one of most widely used formal-
ism for modeling business processes and also there exists a good number of tools
for static and reachability analysis on Petri nets. Many researchers have formal-
ized current workflow/business process specification standards such as BPMN [Ob-
ject Management Group BPMN Technical Committee 2011], BPEL [OASIS WSBPEL
Technical Committee 2007] into Petri nets to do formal verification on the business
processes, as there exists a good number of tools for static and reachability analysis
on Petri nets. The authors in [Dijkman et al. 2008] have provided formal semantics
for BPMN in terms of Petri nets to do static analysis on them, whereas authors
in [Dun et al. 2008, Hinz et al. 2005] provided an approach to model and verify busi-
ness processes specified in BPEL by transforming them into ServiceNet, which is a
special class of Petri nets. Further, authors in [Narayanan & McIlraith 2002] provided
semantics for web service composition in terms of first order logic, which are further
encoded into Petri nets to do an automatic verification, on the other hand authors
in [Yi & Kochut 2004b] developed a design and verification framework for web services
composition based on colored Petri nets. Further, Woflan [van der Aalst 1999b, Ver-
beek & van der Aalst 2000] is a Petri-net-based tool to analyze the correctness of
workflows and business processes specified using Petri-net based formalisms.

Further, automata and process algebras based formalisms have also been used
to model business processes. In [Fu et al. 2004a], author have explored analysis of
interacting BPEL web services by transforming them into a guarded automata with
unbounded queues and further converted them into PROMELA code to do verification
in SPIN model checker. In an another approach [Diaz et al. 2005, Dong et al. 2006],
web service choreographies and orchestrations have been verified by converting them
into timed automata and using UPPAAL [Larsen et al. 1997] as the model checker.
Many researchers [Karamanolis et al. 2000, Salaun et al. 2004, Ferrara 2004] used
process algebras as a formalism to model web services and business processes and
verify them using various model checkers. In [Ferrara 2004], authors have presented a
framework based on process algebras for design and verification of services two-way
mapping between abstract specifications written using process algebra and web ser-
vices written in BPEL4WS. Model checking of workflow schemas have been explored
in [Karamanolis et al. 2000], where the authors used Labelled transition systems for
modeling business processes. In [Morimoto 2008], Shoichi Morimoto provided a very
good overview and survey of existing approaches for formal verification techniques
on business processes.

All the above mentioned approaches have explored formal verification using im-
peratives models and modeling languages, where as our work focuses on formal
verification of business processes modeled using declarative modeling primitives.

SPIN [Holzmann 1997, Holzmann 2004, Vardi & Wolper 1986, Spin 2008, Ben-
Ari 2008] is a model checking and verification system that supports verification of

6.2. Safety and Liveness for DCR Graphs 161
properties against asynchronous process models and distributed systems. Many
researchers [Havelund et al. 1998, Augusto et al. 2003, Guelfi et al. 2004, Guelfi &
Mammar 2005, Janssen et al. 1998] have used SPIN tool for formal verification of
business processes and services. Authors in [Havelund et al. 1998] have used SPIN
to formally verify a multi-threaded plan execution programming language for NASA’s
artificial intelligence-based spacecraft control system that was part of the DEEP
SPACE 1 mission to Mars. Further authors in [Janssen et al. 1998] have used SPIN
to verify business processes modeled in AMBER language as part of TestBed project
for business process reengineering where as authors in [Augusto et al. 2003] have
used both SPIN and STep [Bjørner et al. 2000] tools to verify business processes.

Another major paradigm in business process modeling is the artifact-centric ap-
proach, which strongly argues that data design should be elevated to the same level
as control flows for data rich workflows and business processes. In this area, sev-
eral researchers [Nigam & Caswell 2003, Bhattacharya et al. 2007a, Liu et al. 2007]
have been working with artifact-centric or data-centric workflows and also efforts
has been made to do formal analysis of artifact-centric process models [Gerede
et al. 2007, Gerede & Su 2007, Bhattacharya et al. 2007b, Deutsch et al. 2009]. The
static analysis and verification work in [Gerede et al. 2007, Gerede & Su 2007] fo-
cussed on the procedural version of of the artifact-centric workflows, where as the
later work [Bhattacharya et al. 2007b, Deutsch et al. 2009] studied verification on
declarative version of artifact-centric models. In comparison, the main focus of verifi-
cation work on business artifacts is on data-centric view of processes, where as our
approach is on verifying the declarative business processes where the control flow
is more explicit than data-centric processes.

6.2 Safety and Liveness for DCR Graphs

In this section, we will initiate a study of reasoning about deadlock and liveness
in DCR Graphs and formally define properties for them in terms of markings of a
DCR Graph. The basic motivation behind defining safety and liveness properties is
to use them in the formal verification on DCR Graphs to guarantee the deadlock and
livelock freeness as explained further in the section 6.3 and section 6.4.

6.2.1 Executions and Must Executions

First of all, let is recall the definitions of when an event is enabled (def 3.3.7), the result
of executing an event (def 3.3.8) and an execution (def 3.3.9) from the chapter 3 for easy
readbility, then we will extend these definitions to further define must executions.

Below we formalize in definition. 6.2.1 that an event � of a DCR Graph is enabled
when it is included in the current marking, all the included events that are conditions
for it are in the set of executed event and all the included events that are milestone
events for � are not in the set of responses.

162 Chapter 6. Formal Verification, Tools and Implementation
Definition 6.2.1. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l), and M = (Ex� Re� In) we define that an event � ∈ E is enabled, written
M �G �, if � ∈ In ∧ (In∩ →•�) ⊆ Ex and (In∩ →��) ⊆ E\Re.

The definition 6.2.2 below then defines the change of the marking when an event
� is executed: Firstly, the event � is added to the set of executed events and removed
from the set of pending responses. Secondly, all events that are a response to the
event � are added to the set of pending responses. Note that if an event is a response
to itself, it will remain in the set of pending responses after its execution. Finally,
the included events set will be updated by adding/removing all the events that are
included/excluded by �.

Definition 6.2.2. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l), where M = (Ex� Re� In), event M �G �, we define the result of executing
an event � as (Ex� Re� In) ⊕G � =���

�
Ex ∪ {�}� (Re \ {�})∪ �•→� (In∪ �→+)\ �→%

�
.

Having defined when events are enabled for execution and the effect of executing
an event we can define finite and infinite executions and when they are accepting. In
the definition 6.2.3, we define that an execution in DCR Graphs is a (finite or infinite)
sequence of markings and an execution is accepting if and only if, any required,
included response in any intermediate marking is eventually executed or excluded.

Definition 6.2.3. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define an execution of G to be a (finite or infinite) sequence of
tuples {(M�� ��� ��� M�

�)}�∈[�] each consisting of a marking, an event, a label and another
marking (the result of executing the event) such that

i) M = M0

ii) ∀� ∈ [�]��� ∈ l(��)

iii) ∀� ∈ [�]�M� �G ��

iv) ∀� ∈ [�]�M�
� = M� ⊕G ��

v) ∀� ∈ [� − 1]�M�
� = M�+1.

Further, we say the execution is accepting if ∀� ∈ [�]�
�
∀� ∈ In� ∩ Re��∃� ≥ ���� =

� ∨ � �∈ In�
�)

�
, where M� = (Ex�� In�� Re�) and M�

� = (Ex�
� � In�

� � Re�
�). Further we denote

the set of all executions and set of all accepting executions by exeM(G) and accM(G)
respectively.

Similarly, we define that a must execution is a (finite or infinite) sequence of
markings, where only the events that are required as responses are executed at each
marking and we further say that a must execution is accepting if the included pending
responses in any intermediate marking are eventually executed or excluded.

6.2. Safety and Liveness for DCR Graphs 163
Definition 6.2.4. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define a must execution of G to be a (finite or infinite) sequence
of tuples {(M�� ��� ��� M�

�)}�∈[�] each consisting of a marking, an event, a label and
another marking such that

i) M = M0

ii) ∀� ∈ [�]��� ∈ l(��)

iii) ∀� ∈ [�]�M� �G �� ∧ �� ∈ Re�

iv) ∀� ∈ [�]�M�
� = M� ⊕G ��

v) ∀� ∈ [� − 1]�M�
� = M�+1.

Further, we say the must execution is accepting if ∀� ∈ [�]�
�
∀� ∈ In� ∩ Re��∃� ≥

���� = � ∨ � �∈ In�
�)

�
, where M� = (Ex�� In�� Re�) and M�

� = (Ex�
� � In�

� � Re�
�). Further we

denote the set of all must executions and set of all accepting must executions by
mexeM(G) and maccM(G) respectively.

Finally before defining properties on DCR Graphs, we define that a marking (M�)
is reachable from another marking (M), if there exists an finite execution from M to
M’, as follows.Definition 6.2.5. For a Dynamic Condition Response Graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define that a marking M� is reachable in G (from the marking M)
if there exists a finite execution ending in M� and let �M→∗ (G) denote the set of all
reachable markings from M.

6.2.2 Safety Properties

In this section we introduce and exemplify variations of deadlock freedom as formal
safety properties for DCR Graphs. A DCR Graph is said to be deadlock free if and
only if for any reachable marking, there is either an enabled event or no included
required responses.Definition 6.2.6. For a dynamic condition response graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define that G is deadlock free, if ∀M� = (Ex�� In�� Re�) ∈ �M→∗ �(∃� ∈
E�M� �G � ∨ (In� ∩ Re� = ∅)).

The figure 6.1 shows a DCR Graph and its transitions from different markings,
with sets of included pending responses marked under nodes. The graph shown in
figure 6.1 is not deadlock free, as we can see at the state S3 there is no transition,
which indicates that the marking at S3 does not have any enabled event, but at the
same time it has event � in the included pending responses set, which indicates a
deadlock according to the definition 6.2.6.

On the other hand, the DCR Graph shown in figure 6.2 is deadlock free, even
though the state �3 is non accepting (due to the pending response �), but the marking
at �3 always has an enabled event �.

164 Chapter 6. Formal Verification, Tools and Implementation

(a) non deadlock-free graph (b) state space

Figure 6.1: A non-deadlock free DCR Graph

(a) deadlock-free (b) state space

Figure 6.2: Deadlock free DCR Graph

In definition 6.2.7, we will define that a DCR Graph is strongly deadlock free if
and only if for any reachable marking there is either an enabled event which is also
a required response or no included required responses.Definition 6.2.7. For a dynamic condition response graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define that G is strongly deadlock free, if ∀M� = (Ex�� In�� Re�) ∈
�M→∗ �(∃� ∈ Re��M� �G � ∨ (In� ∩ Re� = ∅)).

One could wonder about why we have defined a stronger notion of deadlock free-
dom, as it clearly puts more stronger constraint on execution traces. In DCR Graphs,
even though an event is enabled at a particular marking, there is no guarantee that
the event will be executed as the events are executed by the actors at their own
discretion. The only way to specify that an event must be executed is by specifying
the event as required response. For example, the graph in figure 6.2 is deadlock free
and at the state �3 the marking contains only one enabled event �, therefore if the
user chooses not to execute the event � (of course he is allowed to do that perfectly
as the event � is not required as response), then it will lead to deadlock. Hence a
deadlock free property in a DCR Graph only guarantees that the graph is structurally
deadlock free by specification, but it does not guarantee about the situations where
an user can create a deadlock by choosing not to execute an enabled event.

6.2. Safety and Liveness for DCR Graphs 165

Figure 6.3: Give Medicine example (deadlock free, live, but not strongly deadlock
free)

To understand the motivation behind the strongly deadlock free property more
clearly, let us consider give medicine (prescribe medicine healthcare workflow) ex-
ample as shown in the figure 6.3. The example is a slightly modified version of the
original version (figure 3.8) and here we have added an self exclude relation on pre-
scribe medicine event and removed the response relation between prescribe medicine
and sign, to illustrate the difference between deadlock free and strongly deadlock
free properties.

The state space for the give medicine example, generated by one of our prototype
tools (described in section 6.5) is shown in the figure 6.4. From the state space for
give medicine, one can see that the DCR Graph for give medicine example is deadlock
free, as we have enabled transitions at every state (alternatively we have enabled
events at every reachable marking), but one can observe that the example can easily
end up into deadlock, if the user chooses not to execute an enabled event. More
specifically, at the state S1 the doctor is not compelled to sign the prescription as
sign is not a required response at �1, hence if the doctor chooses not to sign the
prescription then the process will end up in deadlock. Therefore the give medicine
example shown in the figure 6.3 is not strongly deadlock free, but the strongly live
version of give medicine example (which will be introduced in next section) shown in
figure 6.5 is strongly deadlock free.

6.2.3 Liveness Properties

A DCR Graph is said to be live if and only if, in every reachable marking, it is always
possible to eventually execute or exclude any of the pending responses and thereby
continue along an accepting run.

Definition 6.2.8. For a dynamic condition response graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define that the DCR Graph is live, if ∀M� ∈ �M→∗ �accM� (G) �= ∅.

The give medicine example shown in the figure 6.3 is live, as on can observe

166 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.4: State space for Give Medicine example (deadlock free, live, but not
strongly deadlock free)

in state space shown in the figure 6.4 that from every reachable marking (or state),
there exists a finite execution ending with a marking where there are no included
pending responses, there by making the graph as live according to the definition. In
other words liveness property on DCR Graphs guarantees that it is possible to reach
an accepting state from all reachable markings.

Finally, we say that a DCR Graph is strongly live if and only if, from any reachable
marking there exists an accepting must execution and we define it formally as

Definition 6.2.9. For a dynamic condition response graph G = (E� M� →•� •→� →�
� →+� →%� L� l) we define that the DCR Graph is strongly live, if ∀M� ∈ �M→∗ �maccM� (G) �=
∅.

Again, to explain the motivation behind the strongly live property, let us refer

6.3. Formal Verification using SPIN 167

Figure 6.5: Give Medicine example (strongly live)

to the figure 6.3 (and 6.4), where the DCR Graph for give medicine example is live.
Even though it is possible to proceed along the accepting run from every reachable
marking, but it is not guaranteed if the users choose to execute only the events
that are required as responses. For example at the state �1 in the figure 6.4, if the
doctor does not sign the prescription (as it is not required as response), then it is not
possible to proceed along accepting run.

The figure 6.5 shows a strongly live version of give medicine example, where we
have added a response relation between prescribe medicine and sign and the corre-
sponding state space is shown in the figure 6.6. We can observe that, in the revised
example, from every reachable marking, there exits a must execution leading to an
accepting run just by executing the required as response events at every marking.

In the next section, we will describe a method to verify these safety and liveness
properties on DCR Graphs with the help of model checking tools.

6.3 Formal Verification using SPIN

In this section, we will describe about verification of properties on DCR Graphs that
were introduced in the previous section. In order to verify safety and Liveness prop-
erties on DCR Graphs, we will use SPIN [Holzmann 1997, Holzmann 2004, Vardi &
Wolper 1986, Spin 2008, Ben-Ari 2008] model checker which is a well known system
for verification of asynchronous process models and distributed systems.

First we will give a very concise introduction to SPIN and its modeling language
PROMELA in the next section, then we will describe how to encode DCR Graphs
into PROMELA in section 6.3.2 and finally we will show how to verify safety and
liveness properties on DCR Graphs in section 6.3.3 and 6.3.4.

168 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.6: State space for Give Medicine example (strongly live)

6.3.1 Brief overview of SPIN and PROMELA lanaguage

In this section, we will give a short description of SPIN [Holzmann 1997, Holz-
mann 2004, Vardi & Wolper 1986, Spin 2008, Ben-Ari 2008] and its modeling lan-
guage PROMELA [Spin 2007] and for more details about SPIN tool and PROMELA
language reference, we encourage readers to refer to SPIN’s homepage [Spin 2008].
SPIN is a model checking and verification system that supports verification of proper-
ties against concurrent and distributed processes. The process models or the systems
can be encoded using a modeling meta language called PROMELA [Spin 2007], which
allows for dynamic creation of concurrent processes and communication between the
concurrent processes is handled by either using shared variables or message passing
through buffered channels.

In addition to, some of the language constructs available in PROMELA for specifi-

6.3. Formal Verification using SPIN 169
cation of correctness of the properties, the properties to be verified against the model
can also be specified using Linear Temporal Logic (LTL) [Pnueli 1977]. The model and
the property can be supplied to SPIN model checker and then it determines whether
the given model satisfies the property or not, by performing verification on the state
space of the model. In case if the model does not satisfy the property, then SPIN
generates an error trace by giving a counter example where the model fails to satisfy
the property, which can be used to further debug the model. SPIN can be invoked in
different modes, for example, given a model specified in PROMELA, SPIN can either
perform random simulations of the execution of the model or it can generate a C
program that performs a an exhaustive verification of the state space for the given
model.

PROMELA is a meta programming language (with syntax little bit similar to C)
containing language constructs for specification of models. In addition to that, it
also has certain constructs for specification of non-deterministic behavior and com-
munication via shared variables and buffered channels for modeling distributed and
concurrent processes. In this section, we will only briefly describe the constructs that
are used in encoding of DCR Graphs into PROMELA.

Figure 6.7: Data types and variables in PROMELA

6.3.1.1 Data Types and Variables

The basic data types supported in PROMELA are bit or bool, byte, short, int. All the
variables are initialized to 0 and variable assignment is done by using = sign and
equality of variables is done by == as, shown in the figure 6.7.

6.3.1.2 Arrays, Type definitions and Macros

The PROMELA language supports macros definition similar to C language and
macros can be used to define symbols for the program. For example, in the figure 6.8,
at line number 4, we have defined a symbol count, whose value is 10. Declaring
symbols does not use memory as the preprocessor will replace them with actual
values before generating the code for verifier, but they enhance the code readability.

170 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.8: Arrays and Type definitions in PROMELA

Regarding data structures, PROMELA supports only arrays and typedef con-
structs. Arrays in PROMELA are built-in data structures and they are supported as
a sequence of data values of same type, which can be accessed by providing the index
indicating the position of the element and array index starts at 0. One such array
declaration for bit (or bool) data type can be seen at line number 7 in the figure 6.8.

Further, support for arrays in PROMELA language is limited to one directional
arrays and this a big limitation in order to model processes, but on the other hand
PROMELA supports typedef to construct compound types. We can declare multi
dimensional arrays using typedef as shown in the code of the figure 6.8, where
declaration of a multi dimensional array and assignment of values to its elements is
given.

6.3.1.3 Control flow and other constructs

PROMELA supports three different flow constructs if, do and goto, whose semantics
are little bit similar to the corresponding constructs in other programming languages,
but the flow constructs in PROMELA offer non-deterministic choices in executing
one of their flow branches. The sample syntax of if statement is shown in the
figure 6.9. The alternatives of an if statement starts with double colon (::) and an
optional Boolean statement which acts as a guard and then followed by sequence
of statements, which will be executed if that alternative is chosen. PROMELA first
evaluates all guards for the alternatives and if more than one guard is true, then it
chooses an alternative non-deterministically.

For example in the figure 6.9, we can observe that both first alternative (no guard,
so true) and second alternative (guard is true) are validated to true and PROMELA
will choose of the alternatives non-deterministically. If none of the alternatives are
validated to true in a if block, then the else block will be executed. One may
wonder what happens if we don’t specify an else block and the guards for none of

6.3. Formal Verification using SPIN 171

Figure 6.9: Control flow and proctype in PROMELA

the alternatives are validated to true, in such a case process will be get to halt until
one of the alternatives for if blocks is validated to true.

PROMELA has a do construct for repetition, whose syntax is same as if construct
but with the keyword do, as shown in the figure 6.9. The semantics of do is similar
to if, in respect of evaluating guards and executing one of the alternatives non-
deterministically. After executing one of the alternatives, the control returns to the
starting of the do statement and the only way to exit a loop is by using a break
statement.

The state of a variable can only be modified or inspected by processes. The be-
havior of a process in PROMELA is defined in a proctype declaration as shown in the
figure 6.9. The run operator can be used to create a new instance of process, where
as active keyword can be used to instantiate an initial set of processes. Further
PROMELA has assert statement to specify simple safety properties. An assert state-
ment is followed by an Boolean expression and assertion violation will be reported
if expression is evaluated to false (or 0). In addition to assert, PROMELA also has
progress and accept labels prefixes to specify liveness properties.

Even though PROMELA has other constructs for message passing and sharing
values among concurrent processes, we will not describe them here and conclude our
discussion with the description of the above constructs, and refer our reader to the

172 Chapter 6. Formal Verification, Tools and Implementation
PROMELA language reference [Spin 2007] for further details. As we have covered
most important constructs that will be used in the verification of properties on the
DCR Graphs, now we proceed to the next section where we will explain encoding of
the DCR Graphs into PROMELA language.

6.3.2 Encoding DCR Graphs into PROMELA

Figure 6.10: Verification of DCR Graphs with SPIN - Overview

In this section we describe encoding of the DCR Graphs into PROMELA language
and the challenges involved in the encoding. First, we will discuss the overall archi-
tecture of verification of properties on the DCR Graphs using SPIN as shown in the
figure 6.10. We have developed a DCR verification tool which takes a DCR Graph as
input in the textual representation using a simple user interface, and the tool will au-
tomatically generate the necessary PROMELA code required for verification of safely
and liveness properties on DCR Graphs. The SPIN model checker will generate a
finite automaton from the PROMELA specification, which will be executed by the
verifier for verification of correctness of the properties specified.

In case of verification of liveness properties, we can optionally specify interesting
properties expressed in Linear temporal logic and the SPIN LTL compiler will gen-
erate a finite automaton call never claim, which will be executed together with the
finite automaton generated for the PROMELA code. The automaton for never claim
represents the behavior that is considered as illegal or undesirable with respect to
the property specified in LTL. When the verifier searches the state space for the au-
tomaton for PROMELA code together with the never claim automaton, basically it
will look for counter examples where the specified property will be violated. In case

6.3. Formal Verification using SPIN 173
if it finds a counter example where the property will be violated, it report an error
and necessary trace will be generated for the counter example.

The DCR Graphs have events, relations and markings in the form of sets and
hence the basic data structure is lists with event names. Since PROMELA only
supports integer data types, so we have chosen to encode event names in the form
of numeric constants by assigning numeric values to event names starting with 0.
In order to minimize the memory and state space in SPIN, we have used byte data
type for encoding the event names. The maximum value for a byte data type is only
255, therefore it will limit the number of events in a DCR Graph to 255. Of course
this will be a limitation for modeling lager DCR Graphs, but in such cases one could
easily change it to short data type which has a maximum value of 32767. Further we
have chosen to use abbreviated event names (for example pm for prescribe medicine)
as symbols for the byte constants in order to improve the readability of PROMELA
code. Of course this will not affect the memory as symbols will be replaced with
their constant values before SPIN generates the code for verifier. The declaration of
symbols for abbreviated event names is shown in the figure 6.11 from line 7 to 12.

Further, PROMELA has only arrays as the basic data structures, so we have no
other go except to use arrays to encode the information about events and relations
in the DCR Graphs. Encoding of event set is straight forward, as we can encode
an event set as an array. But the arrays in PROMELA are of fixed size and the
event sets for state management in the DCR Graphs are dynamically changing in the
number of events. Hence for this reason, we have decided to use bit arrays of fixed
size equal to event count, keep tracking of the existence of an event in a set, by the
bit value present at the position of array index equal to numeric value of the event.
The events sets required for state management in DCR Graphs are declared as byte
arrays as shown in figure 6.11 from line 14 to 18. For example, if we want to indicate
that event give medicine (with numeric value = 2) is included in the set of responses,
then we assign the bit value at index = 2 of the responses array to 1.

Encoding of relations is a bit complicated as PROMELA does has support for
one dimensional array only. Hence we have used typedef construct to define two-
dimensional array to encode the relations of DCR Graphs. For the encoding of rela-
tions, we have followed the same approach as that of encoding event set into byte
array. The typedef definition for two dimensional array and declaration of arrays for
the relations in DCR Graphs is shown in the figure 6.11 from line 20-26. To encode
a relation from one event to other, we have defined a two-dimensional byte array of
size (number of events X number of events) in a matrix layout with row index indi-
cating source event numeric value and the column index indicating destination event
numeric value of a relation and finally a bit value of located at the cross section of
both event indices indicate the existence of a relation. For example, an include rela-
tion from sign to give medicine in figure 6.5 can be encoded in PROMELA as shown
at line number 44 in figure 6.12. Finally, the specification for DCR Graph shown in
the figure 6.3 encoded into PROMELA as shown in the figure 6.12. As part of the
specification, we also write the initial marking, which involves specifying the events
initially included in the process, events which are required as initial responses and

174 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.11: Variable declarations for DCR Graphs in PROMELA

the set of executed events is always empty as shown from line number 59-65 in the
figure 6.12. Note that all data types in PROMELA are initialized to 0 by default,
hence all the events which are not explicitly mentioned in the initial marking of the
specification are not included in those sets.

Finally, PROMELA does not have procedures or functions to structure the code,
but it has inline construct which can be used to group a sequence of statements
with a given name as shown in the figure 6.12 at line number 41. We will use inline

6.3. Formal Verification using SPIN 175

Figure 6.12: DCR Graph specification in PROMELA

construct to group the statements related to one logical function through out the
PROMELA programs generated from the verification tool.

6.3.3 Verification of Safety Properties

In this section, we will describe how to verify the safety properties: deadlock free
(Def. 6.2.6) and strongly deadlock free (Def. 6.2.7) using SPIN tool. For the verification
of safety properties, we will the use DCR Graph for the give medicine example (shown
in figure 6.13), which was introduced in the section 6.2.2 on safety properties on
DCR Graphs. The full PROMELA code for verification of a deadlock free property for
the give medicine example is given in the appendix A.1 and in this section, we will
take parts of code to explain the main key aspects.

176 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.13: Give Medicine example

Figure 6.14: PROMELA code for main process

6.3.3.1 Verification of deadlock free property

The overview of logic for verification of safety properties on DCR Graphs is shown in
the figure 6.14, where it shows the logic for the main process function (proctype dcrs),
which will instantiated by the SPIN to generate the code for verifier. The proctype
dcrs contains one main do loop and calls to different inline code blocks.

The first inline code block is model_specification(), which contains the specifica-
tion of the DCR Graphs in PROMELA as described in the previous section. The next
step is to compute the list of enabled events, which has to be computed repeatedly
after execution of an event. The figure 6.12 shows the logic of computing enabled

6.3. Formal Verification using SPIN 177

Figure 6.15: Computing enabled events in PROMELA code

events for a given DCR Graph, where we loop through the list of events in the in-
cluded array and for each event in the included array, we will find out whether all
its condition events included in the current marking are executed or not (line: 90-98
in fig 6.15). Similarly, we also check whether all included milestone events are part

178 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.16: Non deterministic execution in verification of deadlock free property

of the responses array. Finally, the enabledset will be updated with status of events
enabled. Before computing the enabled events, the inline block clear_enabled_events
will be called to clear the bit values of the events enabled.

The next and most important part is nondeterministic_execution() inline block,
which contains the code for executing one of the enabled events from the enabled-
set as shown in the figure 6.16. First, we will calculate if there are any included
pending responses in the current marking and then based on the status bit of the
events in the enabledset, we will generate options to execute an event. In our formal
verification, the execution of an event is nothing but assigning the numeric value
of the event selected for execution to a variable called random_event_executed. As
shown in the figure 6.16 from line 134-139, different alternatives for if block will be
generated assigning a particular event to random_event_executed variable with a
guard based on the status of the bit value in the enabledset. During verification of
the model, the SPIN will evaluate these guards and short list the alternatives for

6.3. Formal Verification using SPIN 179
which guards are evaluated to true and then it will execute one of the alternatives
non-deterministically. In case if none of the alternatives statements are enabled for
execution, which indicates a state where none of the events are available for execu-
tion, then the SPIN will execute the statements following else option, where it leads
to 2 alternative statements.

If there are any included pending response events in the process, then it will lead
to a deadlock situation according to Def. 6.2.6 and the verification will be forced to
stop and raise an error by executing the assert statement with value false. On the
other hand, if there are no included pending responses, then the marking is accepting
and hence the program will jump to deadlock_free_label, which is defined at the end
of the program and there by the program terminates. If there are enabled events
in every marking, then the else block will never gets executed and the do loop will
continue forever without breaking out, but SPIN is intelligent enough to trace the
cycles of the states and then it terminates after inspecting all the states for the
automaton.

Figure 6.17: Verification of deadlock free property in SPIN - Console output

The generated PROMELA code can be verified by using the spin.exe in the com-
mand prompt and the output generated is shown in the figure 6.17. First, by using
the SPIN command with -a will generate the verifier code from the PROMELA spec-
ification and it will output a set of C files pan.*, which can be further compiled with
C-compiler to produce an executable verifier. The executable verifier (pan) can be
called with -X option to output the results to the command prompt. If the verifier
finds any violations of correctness claims, it will report an error, otherwise the claims

180 Chapter 6. Formal Verification, Tools and Implementation
for the correctness are valid. In this case, our claim that the give medicine shown in
the figure 6.13 is deadlock free is valid as the verifier fails to find any errors.

6.3.3.2 Verification of strongly deadlock free property

Figure 6.18: Non deterministic execution for strongly deadlock free property

In this section, we will verify the strongly deadlock free property (def 6.2.7) on the
same give medicine example (shown in figure 6.13) used in verification of deadlock
free property. We have observed that the give medicine example is deadlock free, but
it is not strongly deadlock free as per the discussion in sec 6.2.2. Therefore, we will

6.3. Formal Verification using SPIN 181
use the same deadlockfree give medicine example and verify whether it is strongly
deadlock free or not using the SPIN tool.

The full version of the PROMELA code generated by the DCR verification tool
for the strongly deadlock free property is appended in the appendix A.2, however we
will use important parts of the code to explain the key differences. The PROMELA
code for strongly deadlock free property is almost same as the code for deadlock
free property, except the code in inline nondeterministic_execution, which is shown
in figure 6.18. One can observe that guards for alternatives (line 136-144) under the if
block for non deterministic execution generated for strongly deadlock free property,
now contains an additional condition saying that the enabled event must also be part
of the required response set.

Figure 6.19: Verification of strongly deadlock free property in SPIN - Console output

The PROMELA code for strongly deadlock free property can be verified in the
SPIN using the same commands described above for the deadlock free and we can
observe that now the claim for correctness of strongly deadlock free property fails
with the console output shown in the figure 6.19. In case the SPIN finds a violation
of the claim for correctness of a property, it will generate a error trail by giving
the state details where the claim has been violated. One can use -t option on the
SPIN command to explore the trail and the output of the trail for violation of strongly
deadlock free property on give medicine example is shown in the figure 6.20.

182 Chapter 6. Formal Verification, Tools and Implementation

Figure 6.20: Error trail for violation of strongly deadlock free property in SPIN

6.3.4 Verification of Liveness Properties

In this section, we will describe how to check liveness properties on DCR Graphs
using the SPIN tool. In contrast to the safety properties that are verified on finite
runs, liveness properties are verified on infinite runs and thereby difficult to verify
them. But fortunately the SPIN tools has good support for verification of liveness
properties by the specifying the correctness properties using Linear Temporal Logic
(LTL). In the SPIN [Holzmann 1997], the correctness property specified in LTL will
be automatically converted into a Büchi automaton using the technique specified
in [Gerth et al. 1995]. In order to verify the correctness of the claim, the SPIN uses
negation of the specified LTL formulae to generate a never claim automaton. It tries
to prove the correctness of claim by finding the intersection of the language of the
system and the never claim is empty. On the other hand, if it finds an execution
sequence that matches negated correctness claim, it reports it as error by providing
the counter example in the error trail.

Another important challenge is modeling executions of DCR Graph that are ac-
cepting. As per the definition 6.2.3, an execution is accepting if any required in-
cluded response in any intermediate marking are eventually executed or excluded
(∀� ∈ [�]�

�
∀� ∈ In� ∩ Re��∃� ≥ ���� = � ∨ � �∈ In�

�)
�
). In other words, there should

be any included response event left without execution or excluded for a execution to
be accepting. In order to model this condition, we will use same formal technique of
mapping DCR Graphs to Büchi automata from the section 3.3.4, where the accepting
condition for DCR Graphs is characterized by mapping to Büchi automaton (defini-
tion 3.3.17). First we will describe the mapping informally and then show how it is
encoded into PROMELA code for verification of liveness properties.

In the definition 3.3.17, in order to make sure that no event stays for ever in the
included pending response set, we use multiple copies of the state space by adding

6.3. Formal Verification using SPIN 183

Figure 6.21: Specification of global process for liveness properties

a state index to the marking (index i) . All the events in the event set are ranked
according to some numerical order and after execution of every event, we will compute
a minimum responses set (M�) containing the included response events whose rank
is greater than the state index (M� = {� ∈ In� ∩ Re� | ���� (�) > �}). In case M�
is empty, we will use the included pending responses set (In ∩ Re) in place of M�
set and in any case we compute the minimum element of the sets. In case the event
executed is same as the minimum element of the responses set (M� or In ∩ Re), then
we mark the state as an accepting state to indicate progress and jump to next copy
of the state with state index � = � + 1. In this way, we can make sure that no event
is left over in included pending responses set with out being executed or excluded.

The global process specification in PROMELA for liveness properties is shown
in the figure 6.21 and it contains inline code blocks to compute the minimum of M�
set or In ∩ Re set as explained above. The most important part of verification of
liveness properties is the inline block to check whether a marking is accepting or
not as shown in the figure 6.22. If the event executed is the minimum of M� or set
of included pending responses or if there are no included responses, then we mark
the state as accepting by assigning the variable accepting_state_visited to 1 and
mark these states with progress labels. In the other case where we don’t make any

184 Chapter 6. Formal Verification, Tools and Implementation
progress, we assign accepting_state_visited to 0 to indicate that the the state is non
accepting.

Figure 6.22: Computation of accepting marking

Further, we verify the liveness properties by specifying the correctness claim by
specifying that [] <> ���������_�����_������� in LTL and SPIN will generate never
claim for the negation of the property specified as shown in figure 6.23. Finally,

Figure 6.23: SPIN never claim for [] <> ���������_�����_�������

we can save the never claim in a separate file and generate the verifier for the
model along with the file containing never claim, which can be further verified in
SPIN as explained in the previous section to verify liveness properties. The full
PROMELA code generated by the DCR verification tool for liveness and strongly
liveness properties are appended in the appendix A.3 and A.4 respectively.

6.4. Formal Verification using ZING 185
6.4 Formal Verification using ZING

In this section, we briefly describe our efforts to do formal verification of DCR Graphs
using Zing [Andrews et al. 2004, Fournet et al. 2004] model checker developed by
Microsoft Research. Zing is a model checker for concurrent programs that manipulate
the heap, by using boundaries that exist in the program. It has a modeling language
for expressing concurrent models and a modeling checker for verification programs
written in Zing language.

I have come across Zing tool while visiting Microsoft Research India on my stay
abroad and explored using Zing as a model checker for verification of properties on
DCR Graphs. The basic motivation for exploring Zing tool as against SPIN model
checker can be explained as follows.

1. The Zing language has rich set of constructs for modeling programs and pro-
cesses. Like PROMELA and other the modeling languages, Zing has support for
concurrency, message passing communication either through shared memory
or buffered queues and also support for modeling non-deterministic behavior.
In addition to these, it also supports functions, objects, exceptions, and dynamic
memory allocation as the built-in features in the modeling language. The
Zing language supports Sets and other complex types, rich flow constructs for
branching and iteration, therefore modeling the DCR Graphs in Zing modeling
language is more or less straight forward.

2. The Zing Model checker has infrastructure for generating Zing models automat-
ically from common programming languages like VB, C/C++, C#, and MSIL.
Since our prototype tools are implemented in C#, we want to explore the pos-
sibility of automatic verification of properties on the DCR Graphs by using the
Zing compiler inside the prototype tools.

We have modeled few examples of the DCR Graphs in Zing language and verified
them in Zing model checker. First of all, modeling the DCR Graphs in Zing language
is more or less straight forward as we have expected. We have also noticed that
the number of model checker program states (not the DCR markings) are less when
compared to SPIN, due to the richness of Zing language.

The main drawback of the Zing model checker is that it only supports verification
of safety properties on the models. It does not have support for identifying progress
and acceptance cycles on infinite runs and hence liveness properties could not be
verified on models. Lack of support for liveness by the Zing limits the usage of
the tool for purpose of formal verification of properties on the DCR Graphs. On
contrary, SPIN has very good support for verification of liveness properties using LTL
that gets translated into Büchi automaton, so we have chosen to use SPIN as the
model checker for formal verification of the DCR Graphs. However the give medicine
example modeled in Zing language for verification of deadlock property is enclosed
in appendix B for more details.

186 Chapter 6. Formal Verification, Tools and Implementation
6.5 Prototype Tools

Figure 6.24: Protoype Architecture

To support modeling processes and workflows with the DCR Graphs, making the
models available to a wider audience and allow interested parties to experiment with
our formal model, we have been developing prototype implementations of various
tools for the DCR Graphs. As of now, the tool implementation supports specification
and execution of business processes and workflows specified in the DCR Graphs.
The recent extensions to the model such as sub-processes, data and distribution of
DCR Graphs are not yet supported in the tools, but we do have plans to support
them in the implementation in the near future. The over architecture of the prototype
tools is shown in the figure 6.24.

Most of the tools in the prototype implementation are written in C# using Mi-
crosoft .Net platform, but they have been implemented in service oriented architecture
in a flexible manner so that the client applications developed on other platforms will
be able to communicate easily. A very brief description of the important components
of the prototype implementation with their functionality is explained below.

In the following tools, Windows-based Graphical Editor and Web Client are devel-
oped by my colleague, but we are including here in the thesis, with a good intension
to provide the reader a overall picture of all the tools and the implementation that

6.5. Prototype Tools 187
were built around the DCR Graphs.

Figure 6.25: Process Execution Service Contract

6.5.1 DCRG Process Engine

Figure 6.26: Notification Service Contract

It is the core component of the prototype implementation which handles the func-
tionality of executing process instances of the DCR Graphs, based on the requests
from various clients. The functionality of process engine has been developed as class
library, so that the engine can be hosted in any hosting environment such as a win-
dows or web service. Further, the process engine exposes a service for handling
execution requests for process instances through a contract shown in figure 6.25. On

188 Chapter 6. Formal Verification, Tools and Implementation
the other hand, the process engine does not have any implementation for security,
so any client can call the services of process engine without providing any security
parameters. Even though it is a limitation, we don’t think that it is very crucial as
the main purpose of the prototype is to demonstrate the power of our formal model.

Further, the process engine also handles the functionality of subscription and no-
tification of execution of the process instances. Therefore any client that is interested
in notifications of execution of a particular process instance, can subscribe to the
subscription service and there by receives the notifications from the process engine.
This functionality is quite necessary for the clients which implement the functionality
of runtime verification on the execution of process instances. The process engine does
not have any implementation for runtime verification of process instances, but it pro-
vides support for runtime verification clients through the notification services. In order
to have a scalable process engine, we think, it is a quite important design choice,
not to implement runtime verification functionality as part of the process engine, but
to implement as a client functionality. Hence a prototype client implementing run-
time verification functionality has been developed separately. The service contract of
notification services is shown in the figure 6.26.

Figure 6.27: Service Contract implemented by Process Repository

6.5. Prototype Tools 189
6.5.2 Process Repository

The Process Repository handles the functionality of persisting and supplying the
process definitions and instances of the DCR Graphs. It plays a role of persistence
or data access layer when the prototype compared to a standard workflow man-
agement system or a business process management systems. The functionality of
process repository is exposed through Process Repository Service which implements
the contract shown in figure 6.27. In the prototype implementation, we have devel-
oped a simple process repository based on Xml files stored on a hard disk. However
it can be easily replaced by a process repository implemented using a database as
store for persisting the process definitions and instances.

Figure 6.28: The Graphical Editor for DCR Graphs

6.5.3 Windows-based Graphical Editor

As part of the prototype implementation, we have also developed a windows-based
graphical editor for modeling declarative processes in DCR Graphs as shown in the
figure 6.28. The tool uses the graphical notation for DCR Graphs introduced in the
section 3.4.

The graphical editor also has support for process simulation by executing a pro-
cess instance through process engine, so that users can simulate their processes and
test them during the specification phase.

190 Chapter 6. Formal Verification, Tools and Implementation
6.5.4 Web Client

A platform independent web client has also been developed, which can be used for
executing processes modeled in DCR Graphs as shown in figure 6.29. In future, we
also aim to support modeling of processes in DCR Graphs through this web interface
as well.

Figure 6.29: Execution of a DCR Graph in the Web Tool

6.5.5 Model Checking Tool

Figure 6.30: Code generation options for Model checkers

In order to do formal verification on the processes modeled in the DCR Graphs,
we have used SPIN and ZING model checking tools as explained in the Sec. 6.3 and

6.5. Prototype Tools 191
Sec. 6.4. In order to generate the code for the model checkers automatically, we have
developed a tool, which takes the input of a DCR Graph using a simple graphical
user interface as shown in the figure 6.31 and generates the code for the PROMELA
language using the options shown in figure 6.30.

Figure 6.31: Model Checking Tool for DCR Graphs

6.5.6 Serialization Format for DCR Graphs

Listing 6.1 shows a brief overview of the XML format of the DCR Graphs that is
being used in all prototype tools. A single XML format is used to contain information
about both the specification and the runtime of a DCR Graph. The resources section
of the specification contains information about roles, principals, events and actions,
whereas the access controls section contains the mapping of principals and actions
to roles. The last part of the specification contains the binary relations between the
events. Note that the XML format supports nesting of events and the binary relations
in between them and that flattening of nested events and their relations will be done
at the beginning of executing a DCR Graph.

The second part of the XML format for a DCR Graph holds the runtime informa-
tion, which primarily contains the execution trace and information about the current
state. The execution trace records the actual sequence of events executed and the
current state holds the information about the current marking which contains sets of
included, executed and pending response events. In addition to the marking, the cur-
rent state also holds additional information such as index of state copy, state accepted
to support the acceptance condition for infinite computations that were characterized
by mapping to Büchi-automata in [Mukkamala & Hildebrandt 2010, Hildebrandt &
Mukkamala 2010].

192 Chapter 6. Formal Verification, Tools and Implementation
Listing 6.1: Overview of DCR Graph Xml

<?xml v e r s i o n = " 1 . 0 " encoding =" u t f −8"?>
<dcrg : p rocess xmlns : dcrg =" h t t p : / / i t u . dk / t r u s t c a r e / dcr /2011 / " >

<dcrg : s p e c i f i c a t i o n p ro ce s s I d = " " modelName="" >
<dcrg : resources >

<dcrg : ro l es > < / dcrg : r o l es >
<dcrg : p r i n c i p a l s > < / dcrg : p r i n c i p a l s >
<dcrg : events > < / dcrg : events>
<dcrg : ac t i ons > < / dcrg : ac t i ons >

</dcrg : resources >
<dcrg : accessCon t ro l s >

<dcrg : r o l ePr i n c i pa lAs s i gnmen t s > < / dcrg :
r o l ePr i n c i pa lAs s i gnmen t s >

<dcrg : ac t ionRoleAss ignments > < / dcrg : ac t ionRoleAss ignments >
</dcrg : accessCon t ro l s >
<dcrg : c o n s t r a i n t S e t s >

<dcrg : c o n s t r a i n t S e t type =" c o n d i t i o n " > . . . < / dcrg : c o n s t r a i n t S e t >
<dcrg : c o n s t r a i n t S e t type =" response " > . . . < / dcrg : c o n s t r a i n t S e t >

</dcrg : c o n s t r a i n t S e t s >
</ dcrg : s p e c i f i c a t i o n >

<dcrg : runt ime p r o c e s s I n s t a n c e I d ="" >
<dcrg : execu t ionTrace > </ dcrg : execu t ionTrace >

<dcrg : c u r r e n t S t a t e s t a t e I d ="" >
<dcrg : e ven t s I nc luded > < / dcrg : e ven t s I nc luded >
<dcrg : eventsExecuted > < / dcrg : eventsExecuted>
<dcrg : eventsPendingResponses > < / dcrg : eventsPendingResponses>
<dcrg : s t a t eAccep t i ng > </ dcrg : s t a t eAccep t i ng >
<dcrg : s t a t e I ndex > </ dcrg : s t a t e I ndex >
<dcrg : eventsEnabled > < / dcrg : eventsEnabled>

</dcrg : cu r r en tS ta te >
</ dcrg : runt ime>

</ dcrg : process>

The specification section of the XML document for the case handling process
(figure 4.4) introduced in the case management case study (Sec. 4.1.3) is given in
listing 6.2.

Listing 6.2: DCRG specification in Xml
<dcrg : s p e c i f i c a t i o n >

<dcrg : resources >
<dcrg : ro l es >

<dcrg : ro le >U</ dcrg : ro le >
<dcrg : ro le >LO</ dcrg : ro le >
<dcrg : ro le >DA</ dcrg : ro le >

</ dcrg : r o l es >
<dcrg : p r i n c i p a l s >

<dcrg : p r i n c i p a l >u</ dcrg : p r i n c i p a l >
<dcrg : p r i n c i p a l >lo </ dcrg : p r i n c i p a l >
<dcrg : p r i n c i p a l >da</ dcrg : p r i n c i p a l >

6.5. Prototype Tools 193
</ dcrg : p r i n c i p a l s >
<dcrg : events>

<dcrg : even t e v e n t I d = " 0 " name=" Create case " a c t i o n I d =" Create case ">
<dcrg : even t e v e n t I d = " 1 " name=" Submit " a c t i o n I d =" Submit " />
<dcrg : even t e v e n t I d = " 2 " name=" Ass ign case I d " a c t i o n I d =" Ass ign

case I d " />
<dcrg : even t e v e n t I d = " 3 " name=" Ed i t " a c t i o n I d =" Ed i t ">

<dcrg : even t e v e n t I d = " 4 " name=" Metadata " a c t i o n I d ="
Metadata " />

<dcrg : even t e v e n t I d = " 5 " name=" Dates a v a i l a b l e " a c t i o n I d ="
Dates a v a i l a b l e " />

</ dcrg : event>
</dcrg : event>
<dcrg : even t e v e n t I d = " 6 " name="Manage case " a c t i o n I d ="Manage case ">

<dcrg : even t e v e n t I d = " 7 " name=" Ed i t metadata " a c t i o n I d =" Ed i t
metadata " />

<dcrg : even t e v e n t I d = " 8 " name="Document " a c t i o n I d ="Document ">
<dcrg : even t e v e n t I d = " 9 " name=" Upload " a c t i o n I d =" Upload "

/>
<dcrg : even t e v e n t I d = " 10 " name="Download " a c t i o n I d ="

Download " />
</ dcrg : event>

</dcrg : event>
<dcrg : even t e v e n t I d = " 11 " name=" Arrange Meeting " a c t i o n I d =" Submit ">

<dcrg : even t e v e n t I d = " 12 " name=" Propose dates−LO " a c t i o n I d ="
Propose dates−LO " />

<dcrg : even t e v e n t I d = " 13 " name=" Accept LO " a c t i o n I d =" Accept LO " />
<dcrg : even t e v e n t I d = " 14 " name=" Accept DA " a c t i o n I d =" Accept DA " />
<dcrg : even t e v e n t I d = " 15 " name=" Propose dates−DA " a c t i o n I d ="

Propose dates−DA " />
</dcrg : event>
<dcrg : even t e v e n t I d = " 16 " name=" Hold meeting " a c t i o n I d =" Hold meeting "

/>
</ dcrg : events>
<dcrg : ac t i ons >

<dcrg : a c t i o n a c t i o n I d =" Create case " />
<dcrg : a c t i o n a c t i o n I d =" Submit " />
<dcrg : a c t i o n a c t i o n I d =" Ed i t " />
<dcrg : a c t i o n a c t i o n I d =" Metadata " />
<dcrg : a c t i o n a c t i o n I d =" Dates a v a i l a b l e " / >

</ dcrg : ac t i ons >
</ dcrg : resources >
<dcrg : accessCon t ro l s >

<dcrg : r o l ePr i n c i pa lAs s i gnmen t s >
<dcrg : r o l e P r i n c i p a l A s s i gn m e n t ro le −name="U">

<p r i n c i p a l >u</ p r i n c i p a l >
</ dcrg : r o l ePr i n c i pa lAss i gnmen t >
<dcrg : r o l e P r i n c i p a l A s s i gn m e n t ro le −name="LO">

<p r i n c i p a l >lo </ p r i n c i p a l >
</ dcrg : r o l ePr i n c i pa lAss i gnmen t >

</dcrg : r o l ePr i n c i pa lAs s i gnmen t s >
<dcrg : ac t ionRoleAss ignments >

<dcrg : ac t ionRo leAss ignment a c t i o n I d =" Submit ">
<dcrg : ro le >U</ dcrg : ro le >

194 Chapter 6. Formal Verification, Tools and Implementation
</ dcrg : ac t ionRoleAss ignment >
<dcrg : ac t ionRo leAss ignment a c t i o n I d ="Document ">

<dcrg : ro le >U</ dcrg : ro le >
<dcrg : ro le >LO</ dcrg : ro le >
<dcrg : ro le >DA</ dcrg : ro le >

</ dcrg : ac t ionRoleAss ignment >
</ dcrg : ac t ionRoleAss ignments >

</ dcrg : accessCon t ro l s >
<dcrg : c o n s t r a i n t S e t s >

<dcrg : c o n s t r a i n t S e t type =" c o n d i t i o n ">
<dcrg : c o n s t r a i n t source = " 1 " t a r g e t = " 2 " />
<dcrg : c o n s t r a i n t source = " 3 " t a r g e t = " 1 " / >

</ dcrg : c o n s t r a i n t S e t >
<dcrg : c o n s t r a i n t S e t type =" response ">

<dcrg : c o n s t r a i n t source = " 1 " t a r g e t = " 2 " / >
</ dcrg : c o n s t r a i n t S e t >

</ dcrg : c o n s t r a i n t S e t s >

</ dcrg : s p e c i f i c a t i o n >

The listing 6.3 shows the runtime information for the case handling process from
the figure 4.5.

Listing 6.3: DCRG Runtime in Xml
<dcrg : runt ime p r o c e s s I n s t a n c e I d ="" >

<dcrg : execu t ionTrace >4 ,5 , 4 , 1 , 2 , 12 , 15 </ dcrg : execu t ionTrace >
<dcrg : c u r r e n t S t a t e s t a t e I d ="S6">

<dcrg : e ven t s I nc luded >2 , 4 , 5 , 7 , 9 , 1 0 , 12 , 1 3 , 14 , 15 , 1 6 < / dcrg :
e ven t s I nc luded >

<dcrg : eventsExecuted >1 ,2 , 4 , 5 , 12 ,15 </ dcrg : eventsExecuted>
<dcrg : eventsPendingResponses >13 ,14 ,16 </ dcrg :

eventsPendingResponses>
<dcrg : s t a t eAccep t i ng >0</dcrg : s t a t eAccep t i ng >
<dcrg : s t a t e I ndex >0</dcrg : s t a t e I ndex >
<dcrg : eventsEnabled >1 , 2 , 4 , 5 , 7 , 8 , 1 2 , 13 , 14 , 15 < / dcrg : eventsEnabled>

</dcrg : cu r r en tS ta te >
</ dcrg : runt ime>

6.6 Summary

In this chapter, we have introduced the notion of deadlock and livelock freeness
on the DCR Graphs and formally defined safety and liveness properties in terms of
executions and markings of a DCR Graph in the section 6.2. Since DCR Graphs have
a distinction between which events may or must (eventually) happen, we have defined
strong variants of safety and liveness representing the situation where only required
events are executed.

We then proceeded to give brief introduction to SPIN tool and its language
PROMELA and then explained how to encode a DCR Graph process into PROMELA,
to do the formal verification of safety and liveness properties using our running ex-
ample presrcibe medicine in the section 6.3. Later, we briefly mentioned about our

6.6. Summary 195
experience in using ZING model checker for verification of safety properties on the
DCR Graphs. Finally, we provided a brief overview of the prototype tools and imple-
mentation built around the formal model of DCR Graphs.

Chapter 7Conclusion and Future Work
In this chapter, we will first conclude the work developed in the thesis and then
provide a list of claims for achieving the research goal (Sec 1.5.2) specified in the
introduction chapter. Later, in the second part, we will describe possible future work
and extensions to the thesis.

7.1 Conclusion

In the thesis, we have developed the formal model DCR Graphs for specification
and execution of flexible workflows and business processes based on declarative
modeling primitives, taking motivation from declarative workflow language employed
by our industrial partner Resultmaker A/S [Resultmaker 2008].

In chapter 2, we have introduced the formalisms that have served as background
and motivation for our formal model. As part of that, we have described our first
attempt to formalize the key primitives of Resultmaker’s Online Consultant workflow
using Linear Temporal Logic [Pnueli 1977] and also described a case study and our
experiences in modeling a healthcare workflow using Resultmaker workflow method.
Furthermore, we have briefly described the motivation from the DECLARE [van der
Aalst et al. 2010a] framework and finally we have provided an introduction to Event
Structures [Winskel 1986], which served as base theory behind our formal model.

Furthermore, we have introduced our formal model DCR Graphs in chapter 3 along
with execution semantics mapped to labelled transition system for finite runs and to
Büchi automata for infinite runs. We have also introduced graphical language for
DCR Graphs along with notation to represent runtime state as marking on the graph
itself. Regarding expressiveness of DCR Graphs, we have encoded Büchi automaton
and proved that DCR Graphs is expressive enough to model all ω-regular languages.
The extensions such as nested sub-graphs, multi-instance sub processes and an initial
version of data to DCR Graphs have been presented in chapter 4.

We have defined the notion of projection and composition on DCR Graphs to
distribute a global DCR Graph as a set of synchronously communicating local graphs
in chapter 5. We have proved that the distribution is safe in the sense that the
behavior exhibited by the network of local graphs is bisimilar to that of global graph.
The distribution technique have also been extended to nested DCR Graphs and we
have distributed the healthcare workflow using nested DCR Graphs with the notion
of projection. Our distribution method is quite generic and the strength of distribution
lies in the fact that the resulting local components are also DCR Graphs, which keep
their declarative nature.

198 Chapter 7. Conclusion and Future Work
Finally, we have defined safety and liveness properties on DCR Graphs in chap-

ter 6 and explained a method to encode DCR Graphs into PROMELA language and
then formally verify the properties using SPIN model checker. We have also briefly
introduced the prototype tools build for DCR Graphs in the last chapter.

7.2 Contribution

In the introduction chapter, as part of the thesis statement 1.5, we have stated that the
research goal of this thesis is to show that it is possible to formalize the key primitives
of Resultmaker declarative model and further develop it as a comprehensive formal
model suitable for specification and execution of workflows. Furthermore, we have
also stated that the formal model should also allow safe distribution of a global
workflow as a set of communicating local components, based on top-down model-
driven approach. Finally, we mentioned in the research goal that, we intent to analyze
declarative processes by adding support for formal verification with the help of model
checking tools.

The thesis has made several contributions, but we list the main contributions as
follows.

• We have shown that it is possible to formalize the key primitives of Resultmaker
declarative workflow and further developed it as a comprehensive formal model
DCR Graphs, which is suitable for specification and execution of workflows
based on declarative modeling primitives.

• With 5 core relations, our formal model DCR Graphs is simple but sufficiently
expressive enough to model all ω-languages. We have proved that the DCR Graphs
is bisimilar to Büchi automata in expressing infinite runs.

• Our formal model allows for an intuitive operational semantics and effective
execution expressed by a notion of markings of the graphs. Furthermore we
have also developed a graphical language along with runtime notation for the
DCR Graphs and the runtime state of a DCR Graph can be simply visualized
as a marking on the graph itself. The graphical notation for the DCR Graphs
is also quite useful in modeling workflows in DCR Graphs, especially for the
people without formal background.

• We have provided a general technique for distributing a declarative global pro-
cess as set of synchronously communicating local processes, by defining the
notion of projection and composition. The generality of our distribution tech-
nique allows for fined tuned projections, where one can choose only few events
for a specific role or an actor and most importantly the projected local graphs
keep their declarative nature as the resulting projections are also DCR Graphs,
which can be further distributed.

• In case of distribution of DCR Graphs, we have proved the main theorem that
the distribution is safe in the sense that the behavior exhibited by the local

7.3. Future Work 199
DCR Graphs is consistent with the behavior exhibited by the global DCR Graph.
Furthermore the distribution technique has also been extended to nested DCR Graphs.

• We have applied formal verification techniques on declarative business pro-
cesses specified in DCR Graphs and provided a method to verify properties
on DCR Graphs using SPIN model checker. Furthermore we have built a tool
that automatically generates verification code from workflows models specified
in DCR Graphs and the verification code can be run in SPIN or ZING model
checkers, to verify properties on DCR Graphs.

• We have modeled two case studies, one from healthcare and the other from
case management domain in DCR Graphs, to show that our formal model is
adequate for modeling the workflows from dynamic sectors where flexibility is
of paramount importance.

• This thesis is one of the few ones that offers a formal model for business pro-
cesses based on declarative modeling primitives. We have also build a proto-
type workflow management engine and tools for DCR Graphs to show that the
ideas and concepts developed in the thesis can be easily implemented by a
commercial workflow management system.

• The ideas and concepts developed in the thesis will provide a framework for
suitable extensions to the Resultmaker declarative workflow model, which could
be implemented in the later versions of their product. Furthermore, another in-
dustrial partner Exformatics [Exformatics 2009] has already implemented the
core primitives of DCR Graphs into their commercial Enterprise Content and
Case Management system and they also do have plans to implement our distri-
bution technique developed in the thesis into their commercial tools. It shows
that our formal model is both practicable and easily adoptable into commercial
workflow management systems.

7.3 Future Work

Besides the need of further extensions to the formal model, this dissertation leaves
many open challenges and issues for future research. We will briefly mention some
of them in the following section. We will categorize the future work into 2 parts: the
first part describes the future work related to extensions to the formal model and the
second part describes about relating our work to the other formal models.

7.3.1 Extensions to Formal Model

In this section, we will discuss some of the extensions that we want to add to the
formal model to make it more useful and applicable to many practical problems.

200 Chapter 7. Conclusion and Future Work
7.3.1.1 Time and Exceptions

Temporal constraints are most important to model processes from the real world. As
part of the future work, we are planning to add time deadlines to the constraints,
for example it will be possible to specify that a response constraint must happen
within the specified time interval. Adding temporal constraints will naturally lead us
to violations of such constraints. Hence we also need some type exception handling
in DCR Graphs coupled with some kind of compensation, that can be applied when
an exception happened. We will briefly explain here the motivation and the kind of
support for temporal constraints we want to add to the DCR Graphs.

Figure 7.1: Oncology treatment process with temporal constraints

Let us take a small example from Oncology workflow modeled in DCR Graphs as
shown in the figure 7.1. In the above example, we have two rules, the first one saying
that a drug prepared in the pharmacy must be administered in chemotherapy with
in 24 hours. The second rule says that, adjuvant therapy must have been performed
one to three hours before chemotherapy.

The first rule has been modeled with a response constraint with a time interval
of [0-24] between prepare drug and chemotherapy events as shown in the figure 7.1.
The second rule is modeled with a condition and a milestone relation, both with a
time interval of [1-3] between adjuvant therapy and chemotherapy. Further, we have
also added an exception handler (shown as tilde sign within a circle) on the response
constraint, having an exclude relation to chemotherapy event and a response relation
to prepare drug and adjuvant therapy events, as a compensation for the constraint
violation.

Naturally the response constraint will be violated if the chemotherapy is not
performed within 24 hours after the drug is prepared. In such a case the exception
handler will be invoked, and it will exclude the chemotherapy event and create a
pending response on prepare drug and adjuvant therapy. Until unless the prepare
drug event is re-executed, the event chemotherapy will not be included in the graph
and at the same time the pending responses on prepare drug and adjuvant therapy
will make the graph non-accepting. When the prepare drug event is re-executed, the
chemotherapy will be included, but it will be blocked until unless adjuvant therapy is

7.3. Future Work 201
re-executed because of the milestone relation. Furthermore, the event chemotherapy
can only be executed within 1 to 3 hours after executing adjuvant therapy, otherwise
the chemotherapy will be blocked, on the other hand if the chemotherapy is not done
within 24 hours, the response constraint will be again violated.

One could add support for temporal constraints to DCR Graphs in the similar lines
as explained above. Further execution of an event is considered as instantaneous in
DCR Graphs, but activities in real world have durations. So one could also consider
adding duration to events in DCR Graphs along with the temporal constraints.

7.3.1.2 Programming Language for DCR Graphs with Parametrized Events with data

As part of the extensions to DCR Graphs, another PhD student from our group is
working on defining and implementing a new declarative and purely event-based
language based on the DCR Graphs, tentatively named DECoReS, with a motivation
of applying the DCR Graphs to Event-based Context-sensitive Reactive Services. To
support the formal semantics of DECoReS, we propose extending the DCR Graphs
with parametrized events, automatic events, time and exception handling.

To provide a brief intuition about the languages and extensions, we exemplify
the healthcare process as illustrated by the prescribe medicine healthcare process
adapted from [Lyng et al. 2008, Hildebrandt et al. 2011a]. The process consists of
five events: The prescription of medicine and signing of the prescription by a doctor
(represented by the events prescribe and sign respectively), a nurse giving the
medicine to the patient (represented by the event give, and the nurse indicating
that he does not trust the prescription (represented by the event distrust) and the
doctor removing the prescription, represented by the event remove.

treatment process{
doctor may prescribe<$id, $med, $qty> {

response: administer<$id,$med,$qty>
}
administer<$id, $med, $qty> process
{

doctor must sign { exclude: remove }
nurse must give {

condition: Executed(sign) &
not Executed(remove) &
not Response(sign)

exclude: sign, give, distrust, remove
}
nurse may distrust {

response: sign
include: remove
exclude: give

}

202 Chapter 7. Conclusion and Future Work
doctor may remove {

exclude: sign,give,distrust,remove
}

}
}

To capture that every prescription event prescribe leads to the possible execution
of a "fresh" set of events sign, give, distrust and remove, the event prescribe will
instantiate administer sub process to create a fresh or new set of all the four
events. Observe that now the events are parameterized with data, which means
executing prescribe with a particular set of data values, will be create a fresh
instance of subprocess events and pass the data values to the newly created instances.
Adding parameterized data to events will also bring some changes to semantics of
the relations, to enforce constraints between the events with matching data values.
Implementation of programming language will also lead to some new extensions to
the DCR Graphs.

7.3.1.3 Distribution of DCR Graphs

In the chapter 5, We have given a general technique for distributing a declarative
(global) process as a network of synchronously communicating (local) declarative
processes and proven that the global and distributed execution to be equivalent. But
distributing a global process as a set of asynchronously communicating distributed
processes will be a much harder problem to study. As part of future work one may
study about distribution technique for the DCR Graphs based on asynchronous com-
munication among the distributed processes using buffered queues. This may benefit
from researching the true concurrency semantics inherent in DCR Graphs and ex-
tend the transition system semantics to include concurrency, e.g. like in [Mukund
& Nielsen 1992, Hildebrandt & Sassone 1996]. Further We also planning to study
behavioral types describing the interfaces between communicating DCR Graphs, ex-
tending the work on session types in [Carbone et al. 2007] to a declarative setting.
Another PhD student has started working in this direction to apply theory of ses-
sion types and adapted them from the current imperative models to the declarative
DCR Graphs model and thereby to provide a foundation for statically checked com-
munication protocols for a distributed workflow.

As of now, the distribution technique is applicable to basic DCR Graphs and
nested DCR Graphs only. One may also extend the distribution technique to the
DCR Graphs with present and forthcoming extensions such as sub processes, data,
time and exceptions.

7.3.1.4 Dynamic Changes and Adaptive DCR Graphs

The approach for flexibility so far adopted in DCR Graphs can be categorized as
flexibility by selection [Heinl et al. 1999] or design time flexibility [van der Aalst
et al. 2009]. In some application scenarios, the flexibility by selection or the design

7.3. Future Work 203
time flexibility may not be sufficient and the processes may have to deal with un
expected execution paths.

Dynamic changes are not supported in the current formal model for DCR Graphs,
as we have a static constraint set and events, but one could easily extend the for-
malism to support the dynamic changes. The DCR Graphs allows for an intuitive
operational semantics and effective execution expressed by a notion of markings of
the graphs, which will be updated after execution of every event. Therefore if new
constraints are added at runtime and they will be evaluated in the next execution
of an event. Of course, it will lead to certain challenges such as how to deal with
conflicts and how to adapt the running instances etc. One may also add new events
to the events set at runtime in lines similar to the semantics of sub-processes in
DCR Graphs, where a fresh set of subprocess events will be generated and added to
events set when a sub-process is instantiated.

7.3.1.5 Formal verification

As of now, the work on formal verification for DCR Graphs is only limited to core
model of DCR Graphs. This could be extended to all the present and forthcoming
extensions of DCR Graphs, such as nested sub graphs, sub processes, data, time
and exceptions. Extending formal verification on DCR Graphs with extensions would
be quite challenging. For example adding data domains to the DCR Graphs will
cause the state space exploded problem and verification will become quite complex.
Probably one could explore the approach used by authors in [Deutsch et al. 2009]
for verification of data-centric business processes. Further, for formal verification of
DCR Graphs with temporal constraints, one could consider using Uppaal [Uppaal-
Group 2009] which is model checker for modeling, simulation and verification of real-
time system, based on timed automata.

The work on formal verification can be extended to the technique developed in
chapter 5 to distribute a DCR Graph as set of local components based on the notion
of projection. To verify the distributed DCR Graphs formally, one could consider using
SPIN [Holzmann 2004] model checker as it is a well known system for verification
of asynchronous process models and distributed systems, with suitable constructs
like messages and buffered channels. Moreover, it could be interesting to do formal
verification on real world examples taken from the case studies and compare different
approaches for verification of declarative processes.

7.3.2 Relating to the other formal models

As part of furture work, one could relate DCR Graphs to various formal models which
follow related approaches to model processes and workflows. In this section we will
briefly describe some of the models, which follow similar or related approach to our
formal model DCR Graphs.

204 Chapter 7. Conclusion and Future Work
7.3.2.1 Guard-Stage-Milestone Lifecycle model

As part of future work, we want to relate our formal model to IBM Research’s declar-
ative process model Business Artifacts with Guard-Stage-Milestone life cycles [Dam-
aggio et al. 2011, Hull et al. 2011a, Hull et al. 2011b]. Business artifacts combine the
data aspects and process aspects in a holistic manner and an artifact type contains
both an information model and lifecycle model, where information model manages
the data for business objects and lifecycle model describes the possible ways the
tasks on business objects can be invoked.

As part of the business artifacts, a declarative approach has been taken in the
recent years for specifying the life cycles of business entities, using the Guard- Stage-
Milestone (GSM model) life cycles model. The GSM model is a declarative process
model for specification of interactions between business entities and its operational
semantics are based on rules similar to ECA(Event Condition Action)-like rules from
Active database community.

Our formal model is quite related to the declarative primitives of GSM model and
hence as part of PhD stay abroad, the PhD candidate visited IBM Research, New
York , to study the relation between DCR Graphs and GSM model.

In this section we will explain briefly our ideas about relating DCR Graphs to
GSM model. First, we will explain key primitives of GSM model briefly and then we
will describe a method how one can encode some of the primitives of GSM model
into the DCR Graphs.

Figure 7.2: Requisition Order in GSM model [Hull et al. 2011b]

7.3. Future Work 205
7.3.2.1.1 GSM Primitives
The full details of GSM model are explained in [Hull et al. 2011b] and we will briefly
mention the key primitives of GSM model as follows.

1. Information Model: Captures all business relevant data about entities.

2. Milestones: Correspond to business-relevant operational objectives. They can
be achieved/invalidated by either triggering events or using conditions over the
data attributes or using both. Milestones are owned by Stages.

3. Stages: Correspond to group of activities with hierarchy. The stages own
milestones and by executing the activities inside stages (and child stages), the
milestone owned by the stage can be achieved. A stage becomes inactive when
it’s milestone is achieved, and if there are any child stages within a stage whose
milestone is achieved, all it’s child stages also become inactive. Similarly, if a
stage is opened or become active, then all its milestones is invalidated.

4. Guards: They control when a stage becomes active and each guard is as-
sociated with a sentry. When a sentry become true, then the stage will be
opened.

5. Sentry: A sentry consists of triggering an event type or a data condition or
even both. Sentries are some kind of Boolean expressions and they are used
as conditions for guards, milestones.

Figure 7.2 shows key components of GSM model, where a process for Requisition
Order is modeled. The information model contains both data attributes for busi-
ness relevant data and status attributes for data of process elements. The rounded
rectangles are the stages and the guards are marked as diamonds on the stages.
Milestones are marked with circles on the stages. Stages can contain child stages
or activities.

Further, GSM model has the notion of GSM Business steps (or B-steps), which
focus on updates to a snapshot (i.e., description of current state of a GSM system
at a given point of time) when a single incoming event is to be incorporated into it.
Basically a B-step primarily concentrates on how the GSM system should react to
an incoming event and the focus will be on what stages are opened/closed, and what
milestones are achieved/ invalidated.

Moreover, the operational semantics of GSM model are given by Prerequisite-
Antecedent-Consequent (PAC) Rules, which specify how to make an update to snap-
shot in a single B-step. PAC rules impose certain restrictions to avoid inconsistencies
or anomaly in the GSM system such as a stage can not opened and closed in a single
B-step. Finally GSM model has the notion of events and messages to interact with
the external environment.

7.3.2.1.2 Encoding a GSM model into DCR Graphs
In this section, we briefly explain a tentative way of encoding a GSM model into
DCR Graphs. The GSM model is data-centric and hence it would appropriate to use

206 Chapter 7. Conclusion and Future Work

Figure 7.3: A sample GSM model

Figure 7.4: DCR Graph for sample GSM model

DCR Graphs with data extension as explained in the Sec. 4.3. The tasks and stages
in GSM model can be encoded as the events and nested sub graphs in DCR Graphs.
The status variables and sentries in GSM model can be encoded as variables and
Boolean expressions.

Figure 7.3 shows a sample GSM model containing one stage (S1) with a guard
and two milestones with sentries associated to guards and milestones as shown in
the figure. There can be sub stages or tasks as child elements for a stage, but we
abstract away from the child elements as they can be encoded in the similar fashion
as the stage S1. Further opening and closing of the stages can be modeled by using
include/exclude relations in DCR Graphs.

The sample GSM model encoded into DCR Graphs is shown in the figure 7.4.

7.3. Future Work 207
The status attributes for stages and milestones are encoded explicitly as variables
(for e.g. actS1, m1). The opening of a stage, achieving/invalidating of a milestone are
modeled as explicit events in the DCR Graph. The sentries associated with guards
and milestones in GSM model are modeled as guards (Boolean expression condition)
for the events.

7.3.2.1.3 Challenges of Encoding GSM model into DCR Graphs
Even though the GSM model and DCR Graphs have a lot of similarities in declarative
aspects, but they differ in some subtle aspects, which will make encoding challenging
and we will mention some of the issues briefly here. First of all user request is
explicitly modeled in GSM model as some kind of input events to the system, where
as in DCR Graphs the user request is quite implicit. Moreover, the execution of
events in DCR Graphs are based on the user’s choice thereby user driven, where as
the execution semantics of GSM model are more like automatic updates to the system
state, which be difficult to model. Of course one could add a notion of auto events
to DCR Graphs, which can model the behavior of automatic updates to some extent,
but in that one must make sure that the semantics of PAC rules (e.g toggle-once
principle) are correctly observed. Further explicit interaction with the environment
in GSM model is also difficult to model in the DCR Graphs.

However, as part of the future work in the coming months, we are planning to
study the relation between DCR Graphs and GSM model formally in the similar lines
mention above, which could results in some more extensions to our formal model.

7.3.2.2 Declare model

Declare is a framework for flexible workflows using declarative modeling primitives
based on the constraints defined in LTL and it was briefly introduced in background
chapter (Sec. 2.2) as one of the motivating formalisms for our model. As part of
the future work, we want to relate our formal model with the Declare’s declarative
language ConDec [van der Aalst & Pesic 2006a] by encoding it’s LTL based constraints
into DCR Graphs and also encoding the relations of DCR Graphs into ConDec.

Our approach is closely related to the work on ConDec [van der Aalst et al. 2009,
van der Aalst & Pesic 2006a]. The crucial difference is that we allow nesting and a
few core constraints making it possible to describe the state of a process as a simple
marking. ConDec does not address dynamic inclusion/exclusion, but allows one to
specify any relation expressible within Linear-time Temporal Logic (LTL). This offers
much flexibility with respect to specifying execution constraints. In particular the
condition and response relations in our model are same as precedence and response
constraints in ConDec [van der Aalst & Pesic 2006a] and hence we have used the same
graphical notation. Furthermore, we have encoded Büchi automaton in DCR Graphs
using a straight forward construction in Sec. 3.5, which shows that DCR Graphs can
express all ω-regular languages and thereby more expressive than LTL.

As part of the future work, we are planning to translate constraints from ConDec
as a direct encoding into DCR Graphs. Even though most of the constraints from

208 Chapter 7. Conclusion and Future Work
ConDec can be directly encoded in DCR Graphs using the five core relations, but
we think some of constraints from ConDec could be difficult to encode directly. For
example, in ConDec the constraint disjunctive response says that only one of the
choices are to be executed as a response, which can not be expressed directly in
DCR Graphs. Therefore we are expecting few extensions to DCR Graphs as part of
the work on relating our model to ConDec. On the other hand, expressing dynamic
include / exclude relations from DCR Graphs in terms of LTL could be difficult in
ConDec.

7.3.2.3 Refinement for Transition Systems

Modal transition systems (MTS) [Larsen & Thomsen 1988, Antonik et al. 2008] are
basic transition system model supporting stepwise specification and refinement of
parallel processes, which can be regarded as label transition systems with required
(must) and allowed(may) transitions, with a consistency condition that all must tran-
sitions should be matched directly by a may transition. An over-approximation and
an under-approximation of a process can be defined using a MTS simultaneously. A
class of MTS without the consistency condition is known as Mixed Transition Sys-
tems [Dams et al. 1997], which places no restrictions on the relationship between
may and must transitions.

Some of the researchers in our group are working on providing a new gener-
alization of MTS as Transition Systems with Responses [Carbone et al. 2012] using
the labeled transition system of DCR Graphs with response set to define a notion of
refinement by taking prescribe medicine healthcare workflow as an example. Study
of deadlock and liveness properties in DCR Graphs in relation to Transition Systems
with Responses, adding notion of refinement could be part of the future work on
DCR Graphs.

Appendix APROMELA Code for Verification ofProperties
A.1 PROMELA Code for Deadlock Free Property

1E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

/*
DCRS Example: Givemedicine‐nonstronglydedalockfree PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐27T00:50:32 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a
byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

inline model_specification()
{ /* Specification of DCR Graph */
 /* Specification of Relations */
 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */

2E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which events are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐>
 can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐>
 can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;
 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;

3E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 od;
 /* Non deterministic execution for deadlock free. */
 if
 :: (enabledset[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 dead_lock_reached: printf("Dead lock reached after %u executions!",
 executed_event_count);
 assert(false);
 /* If we dont have any events enabled and
 no included pending responses, then we exit. */
 :: else ‐> goto deadlock_free_label;
 fi;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Specification of DCR graph */
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which events are enabled */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();

4E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\...‐revised.c

 /* Compute state after execution. */
 compute_state_after_execution();
 od;

 deadlock_free_label:
 printf("The given DCR graph is deadlock free");
}

214 Appendix A. PROMELA Code for Verification of Properties
A.2 PROMELA Code for Strongly Deadlock Free Property

1E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

/*
DCRS Example: Givemedicine‐nonstronglydedalockfree PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐28T18:01:59 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;

2E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;
 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;

3E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly deadlock free. */
 if
 :: (enabledset[pm] == 1) && (responses[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) && (responses[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) && (responses[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) && (responses[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached:printf("Strongly dead lock reached after %u executions!",
 executed_event_count);
 assert(0);
 /* If we dont have any enabled events and no included pending responses, then we exit. */
 :: else ‐> goto strongly_deadlock_free_label;
 fi;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification() to assign necessary constraints*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();

4E:\PhDwork\Tools\pc_spin610\Givemedicine_strongdeadlock_Promelacode.c

 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 strongly_deadlock_free_label: printf("The given DCR graph is strongly deadlock free");
}

A.3. PROMELA Code for Liveness Property 219
A.3 PROMELA Code for Liveness Property

1C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

/*
DCRS Example: Givemedicine PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐30T02:22:24 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

/* New Variables for acceptance over infinite runs. */
byte state_index = 0;
bit include_response_current[event_count];
bit included_actions_nextstate[event_count];
bit pending_responses_nextstate[event_count];
bit include_response_nextstate[event_count];
bit acceptable_responses_set[event_count];
bit m_set[event_count];
byte min_include_response_current;
byte min_m_set;
byte m_set_count = 0;
byte include_response_current_set_count = 0;
byte include_response_nextstate_set_count = 0;
bit accepting_state_visited = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

2C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;
 response_relation[pm].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;

3C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1) && (included[index] == 1) ‐> any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly Liveness. */
 if
 :: (enabledset[pm] == 1) ‐> random_event_executed = pm;
 :: (enabledset[s] == 1) ‐> random_event_executed = s;
 :: (enabledset[gm] == 1) ‐> random_event_executed = gm;
 :: (enabledset[dt] == 1) ‐> random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached: printf("Dead lock reached after %u executions!",

executed_event_count);
 assert(false);
 /* If we dont have any actions enabled and no included pending responses, then we exit. */
 :: else ‐> goto end_state;
 fi;
 fi;
}

inline compute_include_response_sets()
{
 index = 0;
 do
 :: index < event_count ‐>
 /* Update for include_response_current set. */
 include_response_current[index] = ((included[index] && responses[index]) ‐> 1: 0);
 /* Calculation of next state set */
 /* Updating the included_actions_nextstate set */
 if
 :: include_relation[random_event_executed].to[index] ‐> included_actions_nextstate[index] = 1 ;
 :: exclude_relation[random_event_executed].to[index] ‐> included_actions_nextstate[index] = 0 ;
 :: else ‐> included_actions_nextstate[index] = included[index];
 fi;
 /* Updating the pending_responses_nextstate set */
 /* Clear the pending response for random_event_executed unless it is not included by itself */
 if
 :: response_relation[random_event_executed].to[index] ‐> pending_responses_nextstate[index] = 1 ;
 :: else ‐> pending_responses_nextstate[index] = ((random_event_executed == index) ‐> 0: responses

[index]);
 fi;
 /* Updating the include_response_nextstate set */
 include_response_nextstate[index] = ((included_actions_nextstate[index] &&

pending_responses_nextstate[index]) ‐> 1: 0);
 /* Compute the acceptable_responses_set (I and R \ (I' and R') U (e)) */
 acceptable_responses_set[index] = (include_response_current[index] && (!

include_response_nextstate[index]) ‐> 1:0);
 m_set[index] = ((include_response_current[index] && (index > state_index)) ‐> 1: 0);
 index = index + 1;
 :: else ‐> break;

4C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 od;
 /* Add the current random action executed to the acceptable_responses_set to get (I and R \ (I' and R'

) U (e))*/
 acceptable_responses_set[random_event_executed] = 1;
}

inline compute_set_minimum()
{
 /* Initially set the min_m_set to highest number as default as 0 is also used as action index */
 min_m_set = event_count;
 min_include_response_current = event_count;
 /* Assign the index to event_count, as we will loop through the array in reverse order to find out min

. */
 index = event_count;
 m_set_count = 0;
 include_response_current_set_count = 0;
 include_response_nextstate_set_count = 0;
 do
 :: index > 0 ‐>
 /* min for m_set */
 if
 :: m_set[index ‐1] ‐> min_m_set = (index ‐1);
 m_set_count++;
 :: else ‐> skip;
 fi;
 /* min for include_response_current set */
 if
 :: include_response_current[index ‐1] ‐> min_include_response_current = (index ‐1);
 include_response_current_set_count++;
 :: else ‐> skip;
 fi;
 /* Find out how many elements are in the include_response_nextstate set */
 include_response_nextstate_set_count = (include_response_nextstate[index ‐1] ‐>

include_response_nextstate_set_count + 1 : include_response_nextstate_set_count);
 index‐‐;
 :: else ‐> break;
 od;
}

inline check_state_acceptance_condition()
{
 if
 /* If no pending responses in the next set. */
 :: (include_response_nextstate_set_count == 0) ‐>
 progress_state_0: accepting_state_visited = 1;
 :: ((m_set_count > 0) && (acceptable_responses_set[min_m_set])) ‐>
 progress_state_1: accepting_state_visited = 1; state_index = min_m_set ;
 :: ((m_set_count == 0) && (min_include_response_current < event_count) &&

(acceptable_responses_set[min_include_response_current])) ‐>
 progress_state_2: accepting_state_visited = 1; state_index = min_include_response_current ;
 /* Otherwise dont change the state index. */
 :: else ‐> accepting_state_visited = 0;
 fi;
}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

5C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin\livenss‐final\Givemedicine_Liveness_Promelacode.c

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification() to assign necessary constraints*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();
 /* Compute include response sets and m‐set etc */
 compute_include_response_sets();
 /* Compute minimum values for include response sets and m‐set etc */
 compute_set_minimum();
 /* Compute state accepting conditions */
 check_state_acceptance_condition();
 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 end_state: printf("End state reached after %u", executed_event_count);
}

A.4. PROMELA Code for Strongly Liveness Property 225
A.4 PROMELA Code for Strongly Liveness Property

1C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

/*
DCRS Example: Givemedicine PROMELA language code for model checking in SPIN tool.
Generated on 2012‐01‐30T02:22:24 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

#define event_count 4
/* Declaration of events */
#define pm 0
#define s 1
#define gm 2
#define dt 3

typedef twodimensionalarray {bit to[event_count]};
/* Declaration of relations */
twodimensionalarray condition_relation[event_count];
twodimensionalarray response_relation[event_count];
twodimensionalarray include_relation[event_count];
twodimensionalarray exclude_relation[event_count];
twodimensionalarray milestone_relation[event_count];
/* Declarations of Marking */
bit included[event_count];
bit executed[event_count];
bit responses[event_count];
bit enabledset[event_count];

/* Looping Counters */
byte index = 0;
byte index2 = 0;
short executed_event_count = 0;
bit accepted_marking = 1;
bit accepted_state_reached = 0;
bit can_execute = 1;
byte loopindex = 0;
/* Not possible to assign ‐1 to a byte, so assign it event_count + 1 */
show byte random_event_executed = event_count + 1;
bit any_included_pending_responses = 0;

/* New Variables for acceptance over infinite runs. */
byte state_index = 0;
bit include_response_current[event_count];
bit included_actions_nextstate[event_count];
bit pending_responses_nextstate[event_count];
bit include_response_nextstate[event_count];
bit acceptable_responses_set[event_count];
bit m_set[event_count];
byte min_include_response_current;
byte min_m_set;
byte m_set_count = 0;
byte include_response_current_set_count = 0;
byte include_response_nextstate_set_count = 0;
bit accepting_state_visited = 0;

inline model_specification()
{
/* Specification of DCR Graph */
/* Relations */

 condition_relation[s].to[pm] = 1;
 condition_relation[gm].to[pm] = 1;
 condition_relation[gm].to[s] = 1;
 condition_relation[dt].to[s] = 1;

2C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 response_relation[pm].to[gm] = 1;
 response_relation[dt].to[s] = 1;
 response_relation[pm].to[s] = 1;

 include_relation[s].to[gm] = 1;
 include_relation[s].to[dt] = 1;

 exclude_relation[pm].to[pm] = 1;
 exclude_relation[gm].to[dt] = 1;
 exclude_relation[dt].to[gm] = 1;

 /* Specification of the initial state */
 /* Included Actions */
 included[pm] = 1;
 included[s] = 1;
 included[gm] = 1;
 included[dt] = 1;

 /* Pending Responses */
 responses[pm] = 1;
}

inline clear_enabled_events()
{
 index = 0;
 do
 :: index < event_count ‐> enabledset[index] = 0 ; index = index + 1;
 :: else ‐> break;
 od;
}

inline compute_enabled_events()
{
 index = 0;
 /* Find out which actions are enabled */
 do /* Loop for outer dimesion, to loop row ount */
 :: index < event_count ‐>
 if
 :: included[index] == 1 ‐>
 index2 = 0;
 can_execute = 1;
 do /* inner loop for 2nd dimension */
 :: index2 < event_count ‐>
 if
 :: condition_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && executed[index2] != 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 if
 :: milestone_relation[index].to[index2] == 1 ‐>
 if
 :: included[index2] == 1 && responses[index2] == 1 ‐> can_execute = 0;
 :: else ‐>skip;
 fi;
 :: else ‐>skip;
 fi;
 index2 = index2 + 1;
 :: else ‐> break;
 od;
 enabledset[index] = (can_execute ‐> 1 : 0);
 ::else ‐> skip;
 fi;

3C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 index++;
 :: else ‐> break;
 od;
}

inline nondeterministic_execution()
{
 any_included_pending_responses = 0;
 index = 0;
 do
 :: index < event_count ‐>
 if
 :: (responses[index] == 1)
 && (included[index] == 1) ‐>
 any_included_pending_responses = 1 ;
 :: else ‐> skip;
 fi;
 index = index + 1;
 :: else ‐> break;
 od;
 /* Non deterministic execution for strongly Liveness. */
 if
 :: (enabledset[pm] == 1) && (responses[pm] == 1) ‐>
 random_event_executed = pm;
 :: (enabledset[s] == 1) && (responses[s] == 1) ‐>
 random_event_executed = s;
 :: (enabledset[gm] == 1) && (responses[gm] == 1) ‐>
 random_event_executed = gm;
 :: (enabledset[dt] == 1) && (responses[dt] == 1) ‐>
 random_event_executed = dt;
 :: else ‐>
 if
 :: (any_included_pending_responses) ‐>
 strongly_dead_lock_reached:
 printf("Dead lock reached after %u executions!",
 executed_event_count);
 assert(false);
 /* If we dont have any actions enabled and
 no included pending responses, then we exit. */
 :: else ‐> goto end_state;
 fi;
 fi;
}

inline compute_include_response_sets()
{
 index = 0;
 do
 :: index < event_count ‐>
 /* Update for include_response_current set. */
 include_response_current[index] =
 ((included[index] && responses[index]) ‐> 1: 0);
 /* Calculation of next state set */
 /* Updating the included_actions_nextstate set */
 if
 :: include_relation[random_event_executed].to[index] ‐>
 included_actions_nextstate[index] = 1 ;
 :: exclude_relation[random_event_executed].to[index] ‐>
 included_actions_nextstate[index] = 0 ;
 :: else ‐> included_actions_nextstate[index] = included[index];
 fi;
 /* Updating the pending_responses_nextstate set */
 /* Clear the pending response for random_event_executed
 unless it is not included by itself */
 if
 :: response_relation[random_event_executed].to[index] ‐>

4C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

 pending_responses_nextstate[index] = 1 ;
 :: else ‐> pending_responses_nextstate[index] =
 ((random_event_executed == index) ‐> 0: responses[index]);
 fi;
 /* Updating the include_response_nextstate set */
 include_response_nextstate[index] =
 ((included_actions_nextstate[index] && pending_responses_nextstate[index]) ‐> 1: 0);
 /* Compute the acceptable_responses_set (I and R \ (I' and R') U (e)) */
 acceptable_responses_set[index] =
 (include_response_current[index] && (!include_response_nextstate[index]) ‐> 1:0);
 m_set[index] = ((include_response_current[index] && (index > state_index)) ‐> 1: 0);
 index = index + 1;
 :: else ‐> break;
 od;
 /* Add the current random action executed to the acceptable_responses_set to get (I and R \ (I' and R')

 U (e))*/
 acceptable_responses_set[random_event_executed] = 1;
}

inline compute_set_minimum()
{
 /* Initially set the min_m_set to highest number as default as 0 is also used as action index */
 min_m_set = event_count;
 min_include_response_current = event_count;
 /* Assign the index to event_count, as we will loop through the array in reverse order to find out min

. */
 index = event_count;
 m_set_count = 0;
 include_response_current_set_count = 0;
 include_response_nextstate_set_count = 0;
 do
 :: index > 0 ‐>
 /* min for m_set */
 if
 :: m_set[index ‐1] ‐> min_m_set = (index ‐1);
 m_set_count++;
 :: else ‐> skip;
 fi;
 /* min for include_response_current set */
 if
 :: include_response_current[index ‐1] ‐> min_include_response_current = (index ‐1);
 include_response_current_set_count++;
 :: else ‐> skip;
 fi;
 /* Find out how many elements are in the include_response_nextstate set */
 include_response_nextstate_set_count = (include_response_nextstate[index ‐1] ‐>

include_response_nextstate_set_count + 1 : include_response_nextstate_set_count);
 index‐‐;
 :: else ‐> break;
 od;
}

inline check_state_acceptance_condition()
{
 if
 /* If no pending responses in the next set. */
 :: (include_response_nextstate_set_count == 0) ‐>
 progress_state_0: accepting_state_visited = 1;
 :: ((m_set_count > 0) && (acceptable_responses_set[min_m_set])) ‐>
 progress_state_1: accepting_state_visited = 1; state_index = min_m_set ;
 :: ((m_set_count == 0) && (min_include_response_current < event_count) &&

(acceptable_responses_set[min_include_response_current])) ‐>
 progress_state_2: accepting_state_visited = 1; state_index = min_include_response_current ;
 /* Otherwise dont change the state index. */
 :: else ‐> accepting_state_visited = 0;
 fi;

5C:\Users\Rao\Dropbox\PhDWork\verification\dcrg‐spin...‐final\Givemedicine_StronglyLiveness_Promelacode.c

}

inline compute_state_after_execution()
{
 /* Update executed actions set*/
 executed[random_event_executed] = 1 ;
 executed_event_count++;
 /* Delete entry from responses set if it is a response to some other action*/
 responses[random_event_executed] = 0 ;
 index = 0;
 do
 :: index < event_count ‐>

 /* Include actions which are included by this action in set included */
 if
 :: include_relation[random_event_executed].to[index] == 1 ‐> included[index] = 1 ;
 :: else ‐> skip;
 fi;

 /* Exclude actions which are excluded by this action in set included */
 if
 :: exclude_relation[random_event_executed].to[index] == 1 ‐> included[index] = 0 ;
 :: else ‐> skip;
 fi;

 /* Include actions which are responses to this action in set responses */
 if
 :: response_relation[random_event_executed].to[index] == 1 ‐> responses[index] = 1 ;
 :: else ‐> skip;
 fi;

 index = index + 1;
 :: else ‐> break;
 od;
}

active proctype dcrs()
{
 /* Call model_specification()*/
 model_specification();
 do
 ::
 /* Clearing away enabled set */
 clear_enabled_events();
 /* Compute which ations are enabled based
 on latest execution set */
 compute_enabled_events();
 /* Execute an action non‐nondeterministically */
 nondeterministic_execution();
 /* Compute include response sets and m‐set etc */
 compute_include_response_sets();
 /* Compute minimum values for include
 response sets and m‐set etc */
 compute_set_minimum();
 /* Compute state accepting conditions */
 check_state_acceptance_condition();
 /* Compute state after execution. */
 compute_state_after_execution();
 od;
 end_state: printf("End state reached after %u",
 executed_event_count);
}

Appendix BZing Code for Give MedicineExample

1E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

/*
DCRS Example: Givemedicine ZING language code for model checking in ZING tool.
Generated on 2010‐06‐17T14:17:56 by DCRStoPROMELA Compiler.
Developed by Raghava Rao Mukkamala (rao@itu.dk)
*/

// Section for Common Declarations
enum TypeActionsEnum {pm, s, gm, dt };

set TypeActionsSet TypeActionsEnum;

set TypeRelationsSet Relation;

class DCRSMain
{
 // set of actions whose conditions are executed.
 static TypeActionsSet EnabledActionsList;
 // E set
 static TypeActionsSet ExecutedActionsList;
 // I set
 static TypeActionsSet IncludedActionsList;
 // R set
 static TypeActionsSet PendingResponsesList;

 static TypeActionsEnum executingAction;

 static int numberOfExecutions;

 static bool atleast_one_accepting_run;

 activate static void Main()
 {
 // Initialise the sets for the state..
 EnabledActionsList = new TypeActionsSet;

 ExecutedActionsList = new TypeActionsSet;

 IncludedActionsList = new TypeActionsSet;

 PendingResponsesList = new TypeActionsSet;

 // Get the DCRS model specification
 DCRSModel.Initialise();

 while(true)
 {
 ComputeEnabledActions();

 assert(sizeof(EnabledActionsList) > 0, "Dead lock");

 //assert (sizeof(PendingResponsesList) == 0, "accepting state reached");

 executingAction = choose(EnabledActionsList);

 UpdateStatespace(executingAction);

 if(sizeof(PendingResponsesList) == 0)
 {
 atleast_one_accepting_run = false;
 }

 //atleast_one_accepting_run = (sizeof(PendingResponsesList) == 0) ? true :

2E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

atleast_one_accepting_run ;

 //event (numberOfExecutions, (numberOfExecutions > 0));
 //trace ("Number of executions {0}", numberOfExecutions);

 }

 assert((!atleast_one_accepting_run), "There is not even a single accepting run!");

 }

 static void ComputeEnabledActions()
 {

 // start with an assumption that all the included actions are enabled
 EnabledActionsList = CloneActionSets(IncludedActionsList, EnabledActionsList);

 // Here the logic is to iterate through all the ConditionsSet relations, and find out
 //which actions are to be deleted.
 foreach(Relation relation in DCRSModel.ConditionsSet)
 {
 if (! (relation.Child in ExecutedActionsList))
 {
 EnabledActionsList = EnabledActionsList ‐ relation.Parent ;
 }
 }

 // Here the logic is to iterate through all the ConditionsSet relations, and find out
 //which actions are to be deleted.
 foreach(Relation relation1 in DCRSModel.StrongConditionsSet)
 {
 if (! (relation1.Child in ExecutedActionsList)) if (relation1.Child in PendingResponsesList)
 {
 EnabledActionsList = EnabledActionsList ‐ relation1.Parent ;
 }
 }

 }

 static void UpdateStatespace(TypeActionsEnum exeAction)
 {

 // Update the counter for numberOfExecutions
 //numberOfExecutions = numberOfExecutions + 1;

 // First update ExecutedActionsList.
 ExecutedActionsList = ExecutedActionsList + exeAction;

 // Update IncludedActionsList with includes and excludes

 // Here the logic is to iterate through all the include relations, and find out
 // which actions are to be included.
 foreach(Relation relation1 in DCRSModel.IncludesSet)
 {
 if (relation1.Parent == exeAction)
 {
 IncludedActionsList = IncludedActionsList + relation1.Child ;
 }
 }

 // Here the logic is to iterate through all the exclude relations, and find out

3E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 // which actions are to be excluded.
 foreach(Relation relation2 in DCRSModel.ExcludesSet)
 {
 if (relation2.Parent == exeAction)
 {
 IncludedActionsList = IncludedActionsList ‐ relation2.Child ;
 }
 }

 // update pending responses (ie remove exeAction)
 PendingResponsesList = PendingResponsesList ‐ exeAction ;

 foreach(Relation relation3 in DCRSModel.ResponsesSet)
 {
 if (relation3.Parent == exeAction)
 {
 PendingResponsesList = PendingResponsesList + relation3.Child ;
 }
 }

 }

 static TypeActionsSet CloneActionSets(TypeActionsSet source, TypeActionsSet target)
 {
 // Make sure that no elements are left in the set.
 if(sizeof(target) > 0)
 {
 target = new TypeActionsSet;
 }

 // Copy all elements one by one.
 foreach(TypeActionsEnum action in source)
 {
 target = target + action ;
 }

 return target;
 }

};

class DCRSModel
{

 static TypeActionsSet ActionsList;

 static TypeRelationsSet IncludesSet;

 static TypeRelationsSet ExcludesSet;

 static TypeRelationsSet ConditionsSet;

 static TypeRelationsSet StrongConditionsSet;

 static TypeRelationsSet ResponsesSet;

 static void Initialise()
 {
 ActionsList = new TypeActionsSet;

 ActionsList = ActionsList + TypeActionsEnum.pm;

 ActionsList = ActionsList + TypeActionsEnum.s;

4E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 ActionsList = ActionsList + TypeActionsEnum.gm;

 ActionsList = ActionsList + TypeActionsEnum.dt;

 // Initialize include relations.

 IncludesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.gm, IncludesSet);

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.dt, IncludesSet);

 // Initialize Exclude relations.

 ExcludesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.dt, ExcludesSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.gm, ExcludesSet);

 // Initialize condition relations.

 ConditionsSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.s, TypeActionsEnum.pm, ConditionsSet);

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.s, ConditionsSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, ConditionsSet);

 // Initialise StrongConditionsSet
 StrongConditionsSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.gm, TypeActionsEnum.s, StrongConditionsSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, StrongConditionsSet);

 // // Initialize Responses relations.

 ResponsesSet = new TypeRelationsSet;

 CreateRelation(TypeActionsEnum.pm, TypeActionsEnum.gm, ResponsesSet);

 CreateRelation(TypeActionsEnum.pm, TypeActionsEnum.s, ResponsesSet);

 CreateRelation(TypeActionsEnum.dt, TypeActionsEnum.s, ResponsesSet);

 // update included set with actions which are initially included.
 //DCRSMain.IncludedActionsList = ActionsList;

 DCRSMain.IncludedActionsList = DCRSMain.CloneActionSets(ActionsList, DCRSMain.IncludedActionsList);

 }

 static void CreateRelation(TypeActionsEnum dom, TypeActionsEnum ran, TypeRelationsSet relationSet)
 {

5E:\mailrao‐dropbox\dropbox‐latest\Dropbox\PhDWork\ZingDCRS\DCRSSample.zing1.1.cs

 Relation rel;

 rel = new Relation;

 rel.Initialise(dom, ran);

 relationSet = relationSet + rel;

 }

};

class Relation
{
 TypeActionsEnum Child;

 TypeActionsEnum Parent;

 void Initialise(TypeActionsEnum dom, TypeActionsEnum ran)
 {
 Parent = dom;

 Child = ran;
 }

};

Bibliography
[Aalst & Weske 2001] Wil M. P. van der Aalst and Mathias Weske. The P2P Ap-

proach to Interorganizational Workflows. In Proceedings of the 13th Interna-
tional Conference on Advanced Information Systems Engineering, CAiSE ’01,
pages 140–156, 2001. (Cited on page 123.)

[Aalst et al. 2011] W M P Van Der Aalst, K M Van Hee, A H M Hofstede and
N Sidorova. Soundness of Workflow Nets : Classification , Decidability , and
Analysis. Technology, vol. 23, no. 3, pages 1–48, 2011. (Cited on page 55.)

[Aalst 2001] W M P Van Der Aalst. Exterminating the Dynamic Change Bug: A Con-
crete Approach to Support Workflow Change. Information Systems Frontiers,
vol. 3, no. 3, pages 297–317, 2001. (Cited on page 55.)

[Aalst 2004] Wil M P Van Der Aalst. Business Process Management Demystified
: A Tutorial on Models , Systems and Standards for Workflow Management.
Lectures on Concurrency and Petri Nets, vol. 3098, no. 3098, pages 1–65, 2004.
(Cited on page 4.)

[Adams et al. 2006] Michael Adams, Arthur H M Hofstede, David Edmond and Wil M
P Van Der Aalst. Worklets : A Service-Oriented Implementation of Dynamic
Flexibility in Workflows. On the Move to Meaningful Internet Systems 2006
CoopIS DOA GADA and ODBASE, vol. 4275, no. 19, pages 291–308, 2006. (Cited
on page 56.)

[Adams 2007] Michael James Adams. Facilitating Dynamic Flexibility and Exception
Handling for Workflows by. PhD thesis, Queensland University of Technology
Brisbane, Australia, 2007. (Cited on page 56.)

[Andrews et al. 2004] Tony Andrews, Shaz Qadeer, Sriram Rajamani, Jakob Rehof and
Yichen Xie. Zing: Exploiting Program Structure for Model Checking Concurrent
Software. In Philippa Gardner and Nobuko Yoshida, editors, CONCUR 2004 -
Concurrency Theory, volume 3170 of Lecture Notes in Computer Science, pages
1–15. Springer Berlin / Heidelberg, 2004. (Cited on pages 159 and 185.)

[Antonik et al. 2008] Adam Antonik, Michael Huth, Kim Larsen, Ulrik Nyman and An-
drzej Wasowski. 20 Years of Mixed and Modal Specifications. Bulletin of the
European Association for Theoretical Computer Science, May 2008. (Cited on
page 208.)

[Ash et al. 2004] J.S. Ash, M. Berg and E. Coiera. Some Unintended Consequences of
Information Technology in Health Care: The Nature of Patient Care Information
System-related Errors. J Sm Med Inform Assoc., vol. 11, pages 104–112, 2004.
(Cited on page 37.)

238 Bibliography
[Augusto et al. 2003] Juan C. Augusto, Michael Butler, Carla Ferreira and Stephen

Craig. Using SPIN and STeP to verify business processes specifications. In In
Proceedings of Eeshov Memorial Conference, pages 207–213. Springer, 2003.
(Cited on page 161.)

[Bardram & Bossen 2005] J.E. Bardram and C. Bossen. Mobility Work: The Spatial
Dimension of Collaboration at a Hospital. Computer Supported Cooperative
Work (CSCW), vol. 14, no. 2, pages 131–160, April 2005. (Cited on page 29.)

[Bates et al. 2001] D.W. Bates, M. Cohen, L.L. Leape, J.M. Overhage, M.M. Shabot and
T. Sheridan. Reducing the frequency of errors in medicine using information
technology. J Am Med Inform Assoc, vol. 8, pages 299–308, 2001. White Paper.
(Cited on page 29.)

[Ben-Ari 2008] Mordechai Ben-Ari. Principles of the spin model checker. Springer,
2008. (Cited on pages 159, 160, 167 and 168.)

[Berg & Toussaint 2003] M. Berg and P. Toussaint. The mantra of modeling and
the forgotten powers of paper: A sociotechnical view on the development of
process-oriented ICT in health care. Int J Med Inform , vol. 69, pages 223–234,
2003. (Cited on page 37.)

[Berg et al. 2000] M. Berg, Klasien Horstman, Saskia Plass and Michelle van Heus-
den. Guidelines, professionals and the production of objectivity: standardisation
and the professionalism of insurance medicine. Sociology of Health & Illness,
vol. 22, pages 765–791(27), November 2000. (Cited on page 38.)

[Bhattacharya et al. 2007a] K. Bhattacharya, N. S. Caswell, S. Kumaran, A. Nigam
and F. Y. Wu. Artifact-centered operational modeling: lessons from customer
engagements. IBM Syst. J., vol. 46, pages 703–721, October 2007. (Cited on
pages 56 and 161.)

[Bhattacharya et al. 2007b] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong
Liu and Jianwen Su. Towards formal analysis of artifactcentric business process
models. In In preparation, pages 288–304, 2007. (Cited on pages 4 and 161.)

[Bjørner et al. 2000] Nikolaj S. Bjørner, Anca Browne, Michael A. Colon, Bernd
Finkbeiner, Zohar Manna, Henny B. Sipma and Tomas E. Uribe. Verifying tem-
poral properties of reactive systems: A STeP tutorial. In FORMAL METHODS
IN SYSTEM DESIGN, page 2000, 2000. (Cited on page 161.)

[Bødker & Christiansen 2004] S. Bødker and E. Christiansen. Designing for ephemer-
ality and prototypicality. In Proceedings of the 5th conference on Designing
interactive systems: processes, practices, methods, and techniques., Cambridge,
MA, USA, 2004. ACM Press. (Cited on page 29.)

Bibliography 239
[Bowen & Stavridou 1993] J. Bowen and V. Stavridou. Safety-critical systems, formal

methods and standards. Software Engineering Journal, vol. 8, no. 4, pages 189
–209, jul 1993. (Cited on page 5.)

[Brauer et al. 1987] Wilfried Brauer, Wolfgang Reisig and Grzegorz Rozenberg, ed-
itors. Petri nets: Central models and their properties, advances in petri nets
1986, part ii, proceedings of an advanced course, bad honnef, 8.-19. september
1986, volume 255 of Lecture Notes in Computer Science. Springer, 1987. (Cited
on pages 160 and 257.)

[Bravetti & Zavattaro 2007] Mario Bravetti and Gianluigi Zavattaro. Contract Based
Multi-party Service Composition. In International Symposium on Fundamentals
of Software Engineering (FSEN), volume 4767, pages 207–222. Springer, 2007.
(Cited on pages 123 and 124.)

[Bravetti & Zavattaro 2009] Mario Bravetti and Gianluigi Zavattaro. A theory of con-
tracts for strong service compliance. Mathematical. Structures in Comp. Sci.,
vol. 19, pages 601–638, June 2009. (Cited on pages 123 and 124.)

[BURNS 1977] J. C. BURNS. The evolution of office information systems. Datamation,
vol. vol. 23,no. 4, pages 60–64, April 1977. (Cited on page 2.)

[Bussler & Jablonski 1994] Christoph Bussler and Stefan Jablonski. Implementing
agent coordination for workflow management systems using active database
systems. In Research Issues in Data Engineering, 1994. Active Database Sys-
tems. Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.
(Cited on pages 7 and 52.)

[Cabana et al. 1999] M.D. Cabana, C.S. Rand, N.R. Powe, A.W. Wu, M.H. Wilson, P.A.
Abboud and H.R. Rubin. Why don’t physicians follow clinical practice guide-
lines? A framework for improvement. JAMA, vol. 282, no. 15, pages 1458–1465,
OCTOBER 1999. (Cited on page 30.)

[Carbone et al. 2007] Marco Carbone, Kohei Honda and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In 16th European
Symposium on Programming (ESOP’07), LNCS, pages 2–17. Springer, 2007.
(Cited on pages 124, 150 and 202.)

[Carbone et al. 2012] Marco Carbone, Thomas Hildebrandt, Hugo A. Lopez, Gian Per-
rone and Andrzej Wasowski. Refinement for Transition Systems with Responses.
In Accepted for International Workshop on Foundations of Interface Technolo-
gies, 2012. (Cited on page 208.)

[Castellani et al. 1999] Ilaria Castellani, Madhavan Mukund and P. Thiagarajan. Syn-
thesizing Distributed Transition Systems from Global Specifications. In Foun-
dations of Software Technology and Theoretical Computer Science, volume
1738, pages 219–231. Springer Berlin / Heidelberg, 1999. (Cited on page 124.)

240 Bibliography
[Cheng 1995] Allan Cheng. Petri Nets, Traces, and Local Model Checking. In Pro-

ceedings of AMAST, pages 322–337, 1995. (Cited on pages 57 and 58.)

[Cicekli & Cicekli 2006] Nihan Kesim Cicekli and Ilyas Cicekli. Formalizing the spec-
ification and execution of workflows using the event calculus. Information Sci-
ences, vol. 176, no. 15, pages 2227 – 2267, 2006. (Cited on pages 55 and 90.)

[Cicekli & Yildirim 2000] Nihan K. Cicekli and Yakup Yildirim. Formalizing Workflows
Using the Event Calculus. In Proceedings of the 11th International Confer-
ence on Database and Expert Systems Applications, DEXA ’00, pages 222–231.
Springer-Verlag, 2000. (Cited on page 55.)

[Cimatti et al. 2000] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri. NUSMV:
a new symbolic model checker. International Journal on Software Tools for
Technology Transfer, vol. 2, page 2000, 2000. (Cited on page 159.)

[Cohn & Hull 2009] David Cohn and Richard Hull. Business Artifacts : A Data-
centric Approach to Modeling Business Operations and Processes. Manage-
ment, vol. 32, no. 3, pages 1–7, 2009. (Cited on page 4.)

[Coiera 2006] E. Coiera. Communication systems in healthcare. Clin Biochem Rev ,
vol. 27, pages 89–98, 2006. (Cited on page 38.)

[Crafa et al. 2007] Silvia Crafa, Daniele Varacca and Nobuko Yoshida. Compositional
Event Structure Semantics for the Internal pi -Calculus. In Luís Caires and
Vasco Thudichum Vasconcelos, editors, CONCUR, volume 4703 of Lecture Notes
in Computer Science, pages 317–332. Springer, 2007. (Cited on page 48.)

[D. Eastlake 2002] D. Solo D. Eastlake J. Reagle. RFC 3275: XML-Signature Syntax
and Processing, 2002. http://www.ietf.org/rfc/rfc3275.txt. (Cited on
page 20.)

[Damaggio et al. 2011] Elio Damaggio, Richard Hull and Roman Vaculín. On the
Equivalence of Incremental and Fixpoint Semantics for Business Artifacts with
Guard-Stage-Milestone Lifecycles. In Stefanie Rinderle-Ma, Farouk Toumani
and Karsten Wolf, editors, BPM, volume 6896 of Lecture Notes in Computer
Science, pages 396–412. Springer, 2011. (Cited on pages 56 and 204.)

[Dams et al. 1997] Dennis Dams, Rob Gerth and Orna Grumberg. Abstract interpre-
tation of reactive systems. ACM Trans. Program. Lang. Syst., vol. 19, pages
253–291, March 1997. (Cited on page 208.)

[Das et al. 1996] S. Das, K. Kochut, J. Miller, A. Sheth and D. Worah. ORBWork: A Re-
liable Distributed CORBA-based Workflow Enactment System for METEOR2.
Technical report, The University of Georgia, 1996. (Cited on page 125.)

[Davenport 1993] T.H. Davenport. Process innovation: reengineering work through in-
formation technology. Harvard Business School Press, 1993. (Cited on page 2.)

http://www.ietf.org/rfc/rfc3275.txt

Bibliography 241
[Davis & Taylor-Vaisey 1997] D.A. Davis and A. Taylor-Vaisey. Translating guidelines

into practice. A systematic review of theoretic concepts, practical experience
and research evidence in the adoption of clinical practice guidelines. CMAJ,
vol. 157, no. 4, pages 408–416, August 1997. (Cited on page 29.)

[Davulcu et al. 1998] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan and I.V. Ra-
makrishnan. Logic Based Modeling and Analysis of Workflows. In Proceedings
of ACM SIGACT-SIGMOD-SIGART, pages 1–3. ACM Press, 1998. (Cited on
pages 7, 52, 55 and 90.)

[de Jong 1991] Gjalt G. de Jong. An Automata Theoretic Approach to Temporal Logic.
In PROCEEDINGS OF 3 RD WORKSHOP ON COMPUTER AIDED VERIFICA-
TION (CAV91), VOLUME 575 OF LECTURE NOTES IN COMPUTER SCIENCE,
pages 477–487. Springer-Verlag, 1991. (Cited on page 39.)

[Deutsch et al. 2009] Alin Deutsch, Richard Hull, Fabio Patrizi and Victor Vianu. Au-
tomatic verification of data-centric business processes. In Proceedings of the
12th International Conference on Database Theory, ICDT ’09, pages 252–267,
New York, NY, USA, 2009. ACM. (Cited on pages 161 and 203.)

[Diaz et al. 2005] Gregorio Diaz, Juan-José Pardo, María-Emilia Cambronero, Valen-
tín Valero and Fernando Cuartero. Automatic Translation of WS-CDL Chore-
ographies to Timed Automata. Formal Techniques for Computer Systems and
Business Processes, pages 230–242, 2005. (Cited on page 160.)

[Dijkman et al. 2008] Remco M. Dijkman, Marlon Dumas and Chun Ouyang. Seman-
tics and analysis of business process models in BPMN. Information and Soft-
ware Technology, vol. 50, no. 12, pages 1281 – 1294, 2008. (Cited on page 160.)

[Dong et al. 2000] Guozhu Dong, Richard Hull, Bharat Kumar, Jianwen Su and Gang
Zhou. A Framework for Optimizing Distributed Workflow Executions. In Re-
vised Papers from the 7th International Workshop on Database Programming
Languages: Research Issues in Structured and Semistructured Database Pro-
gramming, DBPL ’99, pages 152–167, London, UK, 2000. Springer-Verlag. (Cited
on page 124.)

[Dong et al. 2006] Jin Dong, Yang Liu, Jun Sun and Xian Zhang. Verification of Compu-
tation Orchestration Via Timed Automata. In Zhiming Liu and Jifeng He, editors,
Formal Methods and Software Engineering, volume 4260 of Lecture Notes in
Computer Science, pages 226–245. Springer Berlin / Heidelberg, 2006. (Cited
on page 160.)

[Drucker 1993] P.F. Drucker. The New Realities. Harper & Row, 1993. (Cited on
page 37.)

[Dun et al. 2008] Haiqiang Dun, Haiying Xu and Lifu Wang. Transformation of BPEL
Processes to Petri Nets. In Theoretical Aspects of Software Engineering, 2008.

242 Bibliography
TASE ’08. 2nd IFIP/IEEE International Symposium on, pages 166 –173, june
2008. (Cited on page 160.)

[Dwyer et al. 1998] Matthew B. Dwyer, George S. Avrunin and James C. Corbett.
Property specification patterns for finite-state verification. In Proceedings of
the second workshop on Formal methods in software practice, FMSP ’98, pages
7–15, New York, NY, USA, 1998. ACM. (Cited on page 24.)

[Ellis & Nutt 1980] Clarence A. Ellis and Gary J. Nutt. Office Information Systems
and Computer Science. ACM Comput. Surv., vol. 12, pages 27–60, March 1980.
(Cited on page 2.)

[Ellis & Nutt 1996] Clarence A Ellis and Gary J Nutt. Workflow: The Process Spec-
trum. In AmitEditor Sheth, editor, Proceedings of the NSF Workshop on Work-
flow and Process Automation in Information Systems, pages 140–145, 1996.
(Cited on page 2.)

[Ellis et al. 1995] Clarence Ellis, Karim Keddara and Grzegorz Rozenberg. Dynamic
change within workflow systems, pages 10–21. ACM Press, 1995. (Cited on
page 55.)

[Ellis 1979] Clarence A. Ellis. Information Control Nets: A Mathematical Model of
Office Information Flow. Proceedings of the Conference on Simulation, Mea-
surement and Modeling of Computer Systems, ACM SIGMETRICS Performance
Evaluation Review, vol. 8, no. 3, pages 225–240, 1979. (Cited on page 2.)

[Eshuis & Wieringa 2004] R. Eshuis and R. Wieringa. Tool support for verifying UML
activity diagrams. Software Engineering, IEEE Transactions on, vol. 30, no. 7,
pages 437 – 447, july 2004. (Cited on page 159.)

[Eshuis 2002] H. Eshuis. Semantics and Verification of UML Activity Diagrams for
Workflow Modelling. PhD thesis, Univ. of Twente, November 2002. CTIT Ph.D.-
thesis series No. 02-44. (Cited on pages 5 and 159.)

[Exformatics 2009] Exformatics, 2009. http://exformatics.dk/. (Cited on page 199.)

[Fahland 2007] Dirk Fahland. Towards Analyzing Declarative Workflows. In Au-
tonomous and Adaptive Web Services, 2007. (Cited on page 125.)

[Fdhila & Godart 2009] Walid Fdhila and Claude Godart. Toward synchronization
between decentralized orchestrations of composite web services. In Collabo-
rateCom’09, pages 1–10, 2009. (Cited on page 124.)

[Fdhila et al. 2009] Walid Fdhila, Ustun Yildiz and Claude Godart. A flexible approach
for automatic process decentralization using dependency tables. International
Conference on Web Services, 2009. (Cited on page 124.)

http://exformatics.dk/

Bibliography 243
[Feder et al. 1999] G. Feder, M. Eccles, R. Grol, C. Griffiths and J. Grimshaw. Clinical

guidelines: using clinical guidelines. BMJ, vol. 318, pages 728–730, 1999. (Cited
on page 37.)

[Fernandes et al. 1997] Alvaro A. A. Fernandes, M. Howard Williams and Norman W.
Paton. A logic-based integration of active and deductive databases. New Gen.
Comput., vol. 15, no. 2, pages 205–244, 1997. (Cited on pages 6 and 51.)

[Ferrara 2004] Andrea Ferrara. Web Services: A Process Algebra Approach. Pro-
ceedings of the 2nd international conference on Service oriented computing,
pages 242–251, 2004. (Cited on page 160.)

[Field & Lohr 1992] M. J. Field and K. N. Lohr. Guidelines for Clinical Practice: From
Development to Use, 1992. (Cited on page 30.)

[Fournet et al. 2004] Cedric Fournet, Tony Hoare, Sriram Rajamani and Jakob Rehof.
Stuck-Free Conformance. In Rajeev Alur and Doron Peled, editors, Computer
Aided Verification, volume 3114 of Lecture Notes in Computer Science, pages
314–317. Springer Berlin / Heidelberg, 2004. (Cited on pages 159 and 185.)

[Fu et al. 2004a] Xiang Fu, Tevfik Bultan and Jianwen Su. Analysis of interacting
BPEL web services. In Proceedings of the 13th international conference on
World Wide Web, WWW ’04, pages 621–630, New York, NY, USA, 2004. ACM.
(Cited on page 160.)

[Fu et al. 2004b] Xiang Fu, Tevfik Bultan and Jianwen Su. Realizability of Conversa-
tion Protocols With Message Contents. In Proceedings of the IEEE International
Conference on Web Services, ICWS ’04, pages 96–, Washington, DC, USA, 2004.
IEEE Computer Society. (Cited on pages 123 and 124.)

[Gabbay 1987] Dov M. Gabbay. The Declarative Past and Imperative Future: Exe-
cutable Temporal Logic for Interactive Systems. In Temporal Logic in Specifi-
cation, pages 409–448, London, UK, 1987. Springer-Verlag. (Cited on pages 25
and 27.)

[Georgakopoulos et al. 1995] Diimitrios Georgakopoulos, Mark Hornick and Amit
Sheth. An Overview of Workflow Management: From Process Modeling
to Workflow Automation Infrastructure. In DISTRIBUTED AND PARALLEL
DATABASES, pages 119–153, 1995. (Cited on page 3.)

[Gerede & Su 2007] Cagdas E. Gerede and Jianwen Su. Specification and Verifica-
tion of Artifact Behaviors in Business Process Models. In Proceedings of the
5th international conference on Service-Oriented Computing, ICSOC ’07, pages
181–192, Berlin, Heidelberg, 2007. Springer-Verlag. (Cited on pages 4 and 161.)

[Gerede et al. 2007] C.E. Gerede, K. Bhattacharya and Jianwen Su. Static Analysis of
Business Artifact-centric Operational Models. In Service-Oriented Computing

244 Bibliography
and Applications, 2007. SOCA ’07. IEEE International Conference on, pages 133
–140, june 2007. (Cited on pages 4 and 161.)

[Gerth et al. 1995] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech
Eindhoven, D. Peled, M. Y. Vardi and Pierre Wolper. Simple On-the-fly Auto-
matic Verification of Linear Temporal Logic. In In Protocol Specification Testing
and Verification, pages 3–18. Chapman & Hall, 1995. (Cited on page 182.)

[Gerth et al. 1996] Rob Gerth, Doron Peled, Moshe Y. Vardi and Pierre Wolper. Simple
on-the-fly automatic verification of linear temporal logic. In Proceedings of
the Fifteenth IFIP WG6.1 International Symposium on Protocol Specification,
Testing and Verification XV, pages 3–18, London, UK, UK, 1996. Chapman &
Hall, Ltd. (Cited on pages 39 and 41.)

[Grimshaw et al. 2004] J.M. Grimshaw, R.E. Thomas, G. MacLennan, C. Fraser, C.R.
Ramsay, L. Vale, P. Whitty, M.P. Eccles, L. Matowe, L. Shirran, M. Wensing,
R. Dijkstra and C. Donaldson. Effectiveness and efficiency of guideline dis-
semination and implementation strategies. Health Technol Assess 8, vol. iii-iv,
pages 1–72, 2004. (Cited on page 30.)

[Grol & Grimshaw 2003] R. Grol and J. Grimshaw. From best evidence to best practice:
effective implementation of change in patients’ care. The Lancet, vol. 362, pages
1225–1230, 2003. (Cited on pages 29 and 37.)

[Guelfi & Mammar 2005] Nicolas Guelfi and Amel Mammar. A Formal Semantics of
Timed Activity Diagrams and its PROMELA Translation. In APSEC’2005: Asia
Pacific Software Engineering Conference. IEEE Computer Society Press, 2005.
(Cited on pages 159 and 161.)

[Guelfi et al. 2004] Nicolas Guelfi, Amel Mammar and Benoît Ries. A Formal Ap-
proach for the Specification and the Verification of UML Structural Properties:
Application to E-Business Domain. In International Workshop on Software
Verification and Validation (SVV 2004), workshop of ICFEM’04. IEEE Computer
Society, 2004. (Cited on pages 159 and 161.)

[Hammer & Champy 1993] Michael Hammer and James Champy. Reengineering the
corporation: A manifesto for business revolution, volume 5. Harper Business,
1993. (Cited on page 2.)

[Hammer 1990] Michael Hammer. Reengineering Work: Don’t Automate, Obliterate.
Harvard Business Review, vol. 68, pages 104–112, 1990. (Cited on page 2.)

[Harmon 2007] P. Harmon. Business process change: a guide for business managers
and bpm and six sigma professionals. The MK/OMG Press. Elsevier/Morgan
Kaufmann Publishers, 2007. (Cited on pages 2 and 3.)

Bibliography 245
[Havelund et al. 1998] Klaus Havelund, Mike Lowry and John Penix. Formal Analysis

of a Space Craft Controller using SPIN. In In Proceedings of the 4th SPIN
workshop, 1998. (Cited on page 161.)

[Hee et al. 2004] Kees Van Hee, Natalia Sidorova and Marc Voorhoeve. Generalised
Soundness of Workflow Nets Is Decidable. Applications and Theory of Petri
Nets 2004, vol. 3099, page 197Ű215, 2004. (Cited on page 55.)

[Heinl et al. 1999] Petra Heinl, Stefan Horn, Stefan Jablonski, Jens Neeb, Katrin Stein
and Michael Teschke. A Comprehensive Approach to Flexibility in Workflow
Management Systems. In Proceedings of WACC ’99, pages 79–88. ACM Press,
1999. (Cited on page 202.)

[Heljanko & Stefanescu 2005] Keijo Heljanko and Alin Stefanescu. Complexity Re-
sults for Checking Distributed Implementability. In Proceedings of the Fifth In-
ternational Conference on Application of Concurrency to System Design, pages
78–87, 2005. (Cited on pages 124 and 125.)

[Hildebrandt & Mukkamala 2010] Thomas T. Hildebrandt and Raghava Rao Mukka-
mala. Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs. In Kohei Honda and Alan Mycroft, editors, PLACES, vol-
ume 69 of EPTCS, pages 59–73, 2010. (Cited on pages 51 and 191.)

[Hildebrandt & Mukkamala 2011] Thomas Hildebrandt and Raghava Rao Mukka-
mala. Declarative Event-Based Workflow as Distributed Dynamic Condition
Response Graphs. In Post proceedings of International Workshop on Program-
ming Language Approaches to Concurrency and Communication-cEntric Soft-
ware (PLACES 10), 2011. (Cited on page 51.)

[Hildebrandt & Sassone 1996] Thomas Hildebrandt and Vladimiro Sassone. Compar-
ing transition systems with independence and asynchronous transition sys-
tems. In Ugo Montanari and Vladimiro Sassone, editors, CONCUR ’96: Con-
currency Theory, volume 1119 of Lecture Notes in Computer Science, pages
84–97. Springer Berlin / Heidelberg, 1996. (Cited on page 202.)

[Hildebrandt et al. 2011a] Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs
Slaats. Declarative Modelling and Safe Distribution of Healthcare Workflows.
In International Symposium on Foundations of Health Information Engineering
and Systems, Johannesburg, South Africa, August 2011. (Cited on page 201.)

[Hildebrandt et al. 2011b] Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs
Slaats. Designing a Cross-organizational Case Management System using
Dynamic Condition Response Graphs. In Proceedings of IEEE International
EDOC Conference, 2011. (Cited on page 60.)

[Hildebrandt et al. 2011c] Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs
Slaats. Nested Dynamic Condition Response Graphs. In Proceedings of Fun-

246 Bibliography
damentals of Software Engineering (FSEN), April 2011. (Cited on pages 60, 93
and 152.)

[Hildebrandt et al. 2011d] Thomas Hildebrandt, Raghava Rao Mukkamala and Tijs
Slaats. Safe Distribution of Declarative Processes. In 9th International Confer-
ence on Software Engineering and Formal Methods (SEFM) 2011, 2011. (Cited
on pages 147 and 154.)

[Hildebrandt 2008] Thomas Hildebrandt. Trustworthy Pervasive Healthcare Pro-
cesses (TrustCare) Research Project. Webpage, 2008. http://www.trustcare.
dk/. (Cited on pages 10 and 17.)

[Hildebrandt 2010] Thomas Hildebrandt. Interest Group for Processes and IT. Web-
page, 2010. http://www.infinit.dk/dk/interessegrupper/processer_og_
it/. (Cited on page 13.)

[Hill et al. 2006] Janelle B Hill, Jim Sinur, David Flint and Michael James Melen-
ovsky. GartnerŠs Position on Business Process Management , 2006. ReVision,
no. February, 2006. (Cited on page 1.)

[Hinz et al. 2005] Sebastian Hinz, Karsten Schmidt and Christian Stahl. Transforming
BPEL to Petri Nets. In Proceedings of the International Conference on Business
Process Management (BPM2005), volume 3649 of Lecture Notes in Computer
Science, pages 220–235. Springer-Verlag, 2005. (Cited on page 160.)

[Hofstede et al. 2010] Arthur H M Hofstede, Wil M P Aalst, Michael Adams and
NickEditors Russell, editors. Modern business process automation. Springer-
Verlag, 2010. (Cited on page 5.)

[Holzmann 1997] Gerard J. Holzmann. The Model Checker SPIN. IEEE Trans. Softw.
Eng., vol. 23, pages 279–295, May 1997. (Cited on pages 159, 160, 167, 168
and 182.)

[Holzmann 2004] Gerard J. Holzmann. Spin model checker, the: Primer and reference
manual. Addison-Wesley Professional, 2004. (Cited on pages 159, 160, 167, 168
and 203.)

[Hull et al. 2011a] Richard Hull, Elio Damaggio, Riccardo De Masellis, Fabiana
Fournier, Manmohan Gupta, Fenno Terry Heath III, Stacy Hobson, Mark Line-
han, Sridhar Maradugu, Anil Nigam, Piwadee Noi Sukaviriya and Roman Va-
culin. Business artifacts with guard-stage-milestone lifecycles: managing ar-
tifact interactions with conditions and events. In Proceedings of the 5th ACM
international conference on Distributed event-based system, DEBS ’11, pages
51–62, New York, NY, USA, 2011. ACM. (Cited on pages 56, 113 and 204.)

[Hull et al. 2011b] Richard Hull, Elio Damaggio, Fabiana Fournier, Manmohan Gupta,
Fenno Heath, Stacy Hobson, Mark Linehan, Sridhar Maradugu, Anil Nigam,

http://www.trustcare.dk/
http://www.trustcare.dk/
http://www.infinit.dk/dk/interessegrupper/processer_og_it/
http://www.infinit.dk/dk/interessegrupper/processer_og_it/

Bibliography 247
Piyawadee Sukaviriya and Roman Vaculin. Introducing the Guard-Stage-
Milestone Approach for Specifying Business Entity Lifecycles. In Mario Bravetti
and Tevfik Bultan, editors, Web Services and Formal Methods, volume 6551 of
Lecture Notes in Computer Science, pages 1–24. Springer Berlin / Heidelberg,
2011. (Cited on pages xv, 56, 204 and 205.)

[Janssen et al. 1998] Wil Janssen, Radu Mateescu, Sjouke Mauw and Jan Spring-
intveld. Verifying Business Processes using SPIN. In Proceedings of the 4th
International SPIN Workshop, pages 21–36, 1998. (Cited on page 161.)

[Karamanolis et al. 2000] C. Karamanolis, D. Giannakopoulou, J. Magee and S.M.
Wheater. Model checking of workflow schemas. In Enterprise Distributed
Object Computing Conference, 2000. EDOC 2000. Proceedings. Fourth Interna-
tional, pages 170 –179, 2000. (Cited on page 160.)

[Kesten et al. 1996] Yonit Kesten, Zohar Manna and Amir Pnueli. Verification of
Clocked and Hybrid Systems. In European Educational Forum: School on
Embedded Systems’96, pages 4–73. Springer-Verlag, 1996. (Cited on page 159.)

[Khalaf & Leymann 2006] R. Khalaf and F. Leymann. Role-based Decomposition of
Business Processes using BPEL. In Web Services, 2006. ICWS ’06. International
Conference on, pages 770 –780, sept. 2006. (Cited on page 124.)

[Kilov 2002] Haim Kilov. Business models: A guide for business and it. Prentice Hall;,
2002. (Cited on page 1.)

[Kindler et al. 2000] Ekkart Kindler, Axel Martens and Wolfgang Reisig. Inter-
operability of Workflow Applications: Local Criteria for Global Soundness. In
Business Process Management, Models, Techniques, and Empirical Studies,
pages 235–253, London, UK, 2000. Springer-Verlag. (Cited on page 123.)

[Knapp et al. 2002] Alexander Knapp, Stephan Merz and Christopher Rauh. Model
Checking - Timed UML State Machines and Collaborations. In Proceedings
of the 7th International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems: Co-sponsored by IFIP WG 2.2, FTRTFT ’02, pages
395–416, London, UK, UK, 2002. Springer-Verlag. (Cited on page 160.)

[Kohn et al. 2000] L.T. Kohn, J.M. Corrigan and M.S Donaldson. To err is human.
building a safer health system. National Academic Press, Washington DC,
2000. (Cited on pages 29 and 37.)

[Kowalski 1992] Robert Kowalski. Database updates in the event calculus. J. Log.
Program., vol. 12, no. 1-2, pages 121–146, 1992. (Cited on page 55.)

[Krukow et al. 2008] Karl Krukow, Mogens Nielsen and Vladimiro Sassone. A logical
framework for history-based access control and reputation systems. J. Comput.
Secur., vol. 16, pages 63–101, January 2008. (Cited on page 48.)

248 Bibliography
[Kumaran et al. 2003] S. Kumaran, P. Nandi, T. Heath, K. Bhaskaran and R. Das.

ADoc-oriented programming. In Applications and the Internet, 2003. Proceed-
ings. 2003 Symposium on, pages 334 – 341, jan. 2003. (Cited on page 4.)

[Laroussinie et al. 2002] F. Laroussinie, N. Markey and Ph. Schnoebelen. Temporal
logic with forgettable past. In Proceedings of 17th IEEE Symp. Logic in Com-
puter Science (LICS’2002), pages 383–392, Copenhagen, Denmark, July 2002
2002. IEEE Computer Society Press. (Cited on page 25.)

[Larsen & Thomsen 1988] K.G. Larsen and B. Thomsen. A modal process logic. In
Logic in Computer Science, 1988. LICS ’88., Proceedings of the Third Annual
Symposium on, pages 203 –210, jul 1988. (Cited on page 208.)

[Larsen et al. 1997] Kim G. Larsen, Paul Pettersson and Wang Yi. UPPAAL in a
Nutshell, 1997. (Cited on page 160.)

[Latella & Massink 2001] D. Latella and M. Massink. A formal testing framework for
UML statechart diagrams behaviours: from theory to automatic verification. In
High Assurance Systems Engineering, 2001. Sixth IEEE International Sympo-
sium on, pages 11 –22, 2001. (Cited on page 159.)

[Latella et al. 1999] Diego Latella, Istvan Majzik and Mieke Massink. Automatic Ver-
ification of a Behavioural Subset of UML Statechart Diagrams Using the SPIN
Model-checker. Formal Aspects of Computing, vol. 11, no. 6, pages 637–664,
December 1999. (Cited on page 159.)

[Lenz & Reichert 2007] Richard Lenz and Manfred Reichert. IT support for healthcare
processes - premises, challenges, perspectives. Data Knowl. Eng., vol. 61, no. 1,
pages 39–58, 2007. (Cited on pages 29 and 37.)

[Levitt 1960] Theodore Levitt. Marketing myopia. 1960. Harvard Business Review,
vol. 82, no. 7-8, pages 138–49, 1960. (Cited on page 2.)

[Lilius & Paltor 1999] J. Lilius and I.P. Paltor. vUML: a tool for verifying UML models.
In Automated Software Engineering, 1999. 14th IEEE International Conference
on., pages 255 –258, oct 1999. (Cited on page 160.)

[Liu et al. 2007] Rong Liu, Kamal Bhattacharya and Frederick Wu. Modeling Busi-
ness Contexture and Behavior Using Business Artifacts. In John Krogstie, An-
dreas Opdahl and Guttorm Sindre, editors, Advanced Information Systems En-
gineering, volume 4495 of Lecture Notes in Computer Science, pages 324–339.
Springer Berlin / Heidelberg, 2007. (Cited on pages 56 and 161.)

[Lyng et al. 2008] Karen Marie Lyng, Thomas Hildebrandt and Raghava Rao Mukka-
mala. From Paper Based Clinical Practice Guidelines to Declarative Work-
flow Management. In Proceedings of 2nd International Workshop on Process-
oriented information systems in healthcare (ProHealth 08), pages 36–43, Milan,

Bibliography 249
Italy, 2008. BPM 2008 Workshops. (Cited on pages 7, 18, 52, 53, 73, 89, 91, 92,
150, 157 and 201.)

[Martens 2005] Axel Martens. Analyzing Web Service Based Business Processes. In
Fundamental Approaches to Software Engineering. Springer Berlin / Heidel-
berg, 2005. (Cited on page 123.)

[M.Clarke et al. 1999] Edmund M.Clarke, Orna Grumberg and Doron A.Peled. Model
checking. MIT Press, 1999. (Cited on pages 5, 24 and 41.)

[McNaughton 1966] Robert McNaughton. Testing and generating infinite sequences
by a finite automaton. Information and Control, vol. 9, no. 5, pages 521–530,
1966. (Cited on page 89.)

[Microsoft-Research 2010] Microsoft-Research. Zing Model Checker. Webpage,
2010. http://research.microsoft.com/en-us/projects/zing/. (Cited on
page 16.)

[Milosevic et al. 2006] Zoran Milosevic, Shazia Sadiq and Maria Orlowska. Towards
a Methodology for Deriving Contract-Compliant Business Processes. In Busi-
ness Process Management, volume 4102 of Lecture Notes in Computer Science,
pages 395–400. Springer Berlin / Heidelberg, 2006. (Cited on page 124.)

[Mimnagh & Murphy. 2004] C. Mimnagh and M. Murphy. Junior doctors working pat-
terns: application of knowledge management theory to junior doctors training.
In Proc. of the conf. on current perspectives in healthcare computing, pages
42–47. Harrogate, 2004. (Cited on page 38.)

[Mitra et al. 2008] Saayan Mitra, Ratnesh Kumar and Samik Basu. Optimum Decen-
tralized Choreography for Web Services Composition. In Proceedings of the
2008 IEEE International Conference on Services Computing - Volume 2, 2008.
(Cited on page 124.)

[Mohan et al. 1995] C. Mohan, D. Agrawal, G. Alonso, A. El Abbadi, R. Guenthoer
and M. Kamath. Exotica: a project on advanced transaction management and
workflow systems. SIGOIS Bull., vol. 16, pages 45–50, August 1995. (Cited on
page 125.)

[Montali 2010] Marco Montali. Specification and verification of declarative open in-
teraction models: A logic-based approach, volume 56 of Lecture Notes in Busi-
ness Information Processing. Springer, 2010. (Cited on page 125.)

[Morimoto 2008] Shoichi Morimoto. A Survey of Formal Verification for Business Pro-
cess Modeling. New York, vol. 5102, pages 514–522, 2008. (Cited on page 160.)

[Mukkamala & Hildebrandt 2010] Raghava Rao Mukkamala and Thomas Hilde-
brandt. From Dynamic Condition Response Structures to Büchi Automata. In
Proceedings of 4th IEEE International Symposium on Theoretical Aspects of
Software Engineering (TASE 2010), August 2010. (Cited on pages 51 and 191.)

http://research.microsoft.com/en-us/projects/zing/

250 Bibliography
[Mukkamala et al. 2008] Raghava Rao Mukkamala, Thomas Hildebrandt and

Janus Boris Tøth. The Resultmaker Online Consultant: From Declarative Work-
flow Management in Practice to LTL. In Proceeding of DDBP, 2008. (Cited on
pages 7, 18, 52, 53 and 89.)

[Mukund & Nielsen 1992] Madhavan Mukund and Mogens Nielsen. CCS, locations
and asynchronous transition systems. In Rudrapatna Shyamasundar, editor,
Foundations of Software Technology and Theoretical Computer Science, volume
652 of Lecture Notes in Computer Science, pages 328–341. Springer Berlin /
Heidelberg, 1992. (Cited on page 202.)

[Mukund 2002] M. Mukund. From Global Specifications to Distributed Implementa-
tions. In Synthesis and Control of Discrete Event Systems. Springer, 2002.
(Cited on page 124.)

[Mulyar et al. 2007] N. Mulyar, M. Pesic, W.M. van der Aalst and M. Peleg. Towards
the Flexibility in Clinical Guideline Modelling Languages. BPM Center Report
(Ext. rep. BPM-07-04)., vol. 8, 2007. (Cited on page 29.)

[Nanda et al. 2004] Mangala Gowri Nanda, Satish Chandra and Vivek Sarkar. De-
centralizing execution of composite web services. SIGPLAN Not., vol. 39, pages
170–187, October 2004. (Cited on page 124.)

[Narayanan & McIlraith 2002] Srini Narayanan and Sheila A. McIlraith. Simulation,
verification and automated composition of web services. In Proceedings of the
11th international conference on World Wide Web, WWW ’02, pages 77–88,
New York, NY, USA, 2002. ACM. (Cited on page 160.)

[Nielsen et al. 1979] Mogens Nielsen, Gordon Plotkin and Glynn Winskel. Petri nets,
event structures and domains. In Gilles Kahn, editor, Semantics of Concurrent
Computation, volume 70 of Lecture Notes in Computer Science, pages 266–284.
Springer Berlin / Heidelberg, 1979. 10.1007/BFb0022474. (Cited on pages 43
and 53.)

[Nigam & Caswell 2003] A. Nigam and N. S. Caswell. Business artifacts: An approach
to operational specification. IBM Syst. J., vol. 42, pages 428–445, July 2003.
(Cited on pages 4, 56 and 161.)

[OASIS WSBPEL Technical Committee 2007] OASIS WSBPEL Technical Committee.
Web Services Business Process Execution Language, Version 2.0, 2007. http:
//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf. (Cited on
pages 5, 124 and 160.)

[Object Management Group BPMN Technical Committee 2011] Object Management
Group BPMN Technical Committee. Business Process Model and Notation, Ver-
sion 2.0. Webpage, january 2011. http://www.omg.org/spec/BPMN/2.0/PDF.
(Cited on pages 5 and 160.)

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/spec/BPMN/2.0/PDF

Bibliography 251
[OMG 2007] OMG. OMG Unified Modeling Language Infrastructure, Version

2.1.2. Webpage, November 2007. http://www.omg.org/spec/UML/2.1.2/
Infrastructure/PDF. (Cited on page 5.)

[Orlikowski & Gash 1994] Wanda J. Orlikowski and Debra C. Gash. Technological
frames: making sense of information technology in organizations. ACM Trans.
Inf. Syst., vol. 12, no. 2, pages 174–207, April 1994. (Cited on page 38.)

[Paul et al. 1997] Santanu Paul, Edwin Park and Jarir Chaar. RainMan: a workflow
system for the internet. In Proceedings of the USENIX Symposium on Internet
Technologies and Systems on USENIX Symposium on Internet Technologies
and Systems, 1997. (Cited on page 125.)

[Pesic et al. 2007] M. Pesic, H. Schonenberg and W.M.P. van der Aalst. DECLARE:
Full Support for Loosely-Structured Processes. In Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference, pages 287–.
IEEE Computer Society, Washington, DC, USA, 2007. (Cited on pages 40, 41
and 53.)

[Pesic 2008] Maja Pesic. Constraint-Based Workflow Management Systems: Shifting
Control to Users. PhD thesis, Eindhoven University of Technology, Netherlands,
2008. (Cited on pages 7, 8 and 52.)

[Petri 1977] C.A. Petri. Non-sequential processes: translation of a lecture given at
the immd jubilee colloquium on "parallelism in computer science", university
of erlngen-nürnberg, june 1976. GMD-ISF report. GMD, Ges. für Math. und
Datenverarb., 1977. (Cited on page 43.)

[Petri 1980] C. A. Petri. Introduction to General Net Theory. In Proceedings of the
Advanced Course on General Net Theory of Processes and Systems: Net The-
ory and Applications, pages 1–19, London, UK, 1980. Springer-Verlag. (Cited
on page 43.)

[Pnueli 1977] A. Pnueli. The temporal logic of programs. In Proceedings of 18th IEEE
FOCS, pages 46–57, 1977. (Cited on pages 15, 17, 24, 40, 169 and 197.)

[Porres 2001] I. Porres. Modeling and Analyzing Software Behavior in UML. PhD
thesis, TUCS Turku Centre for Computer Science, 2001. (Cited on page 159.)

[Quaglini et al. 2001] S. Quaglini, M. Stefanelli, G. Lanzola, V. Caporusso and S. Pan-
zarasa. Flexible guideline-based patient careflow systems. Artif Intell Med .,
vol. 22, pages 65–80, 2001. (Cited on page 29.)

[Ranno & Shrivastava 1999] F. Ranno and S. K. Shrivastava. A Review of Distributed
Workflow Management Systems. In Proceedings of the international joint con-
ference on Work activities coordination and collaboration, 1999. (Cited on
page 125.)

http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF
http://www.omg.org/spec/UML/2.1.2/Infrastructure/PDF

252 Bibliography
[Reddy et al. 2001] Madhu C. Reddy, Paul Dourish and A. Pratt. Coordinating Het-

erogeneous Work: Information and Representation in Medical Care. In In Prinz
et al, pages 239–258. Kluwer Academic Publishers, 2001. (Cited on page 37.)

[Reichert & Bauer 2007] Manfred Reichert and Thomas Bauer. Supporting Ad-Hoc
Changes in Distributed Workflow Management Systems. In Robert Meersman
and Zahir Tari, editors, On the Move to Meaningful Internet Systems 2007:
CoopIS, DOA, ODBASE, GADA, and IS, volume 4803 of Lecture Notes in Com-
puter Science, pages 150–168. Springer Berlin / Heidelberg, 2007. (Cited on
page 125.)

[Reichert & Dadam 1997] Manfred Reichert and Peter Dadam. A Framework for Dy-
namic Changes in Workflow Management Systems. In in ‘Proceedings, 8th Int’l
Conference on Database and Expert Systems Applications (DEXA-97, pages
42–48. IEEE Computer Society Press, 1997. (Cited on page 6.)

[Reichert & Dadam 1998] M Reichert and P Dadam. ADEPTflex: Supporting Dy-
namic Changes of Workflow without Loosing Control. Journal of Intelligent
Information Systems, vol. 10, pages 93–129, 1998. (Cited on page 55.)

[Reichert et al. 2003] Manfred Reichert, Stefanie Rinderle and Peter Dadam. ADEPT
Workflow Management System Flexible Support for Enterprise-Wide Business
Processes - Tool Presentation -. In Proc. 1st Int’l Conf. on Business Process
Management (BPM ’03), number 2678 of LNCS, pages 371–379. Springer, June
2003. (Cited on page 55.)

[Reichert et al. 2009] M. U. Reichert, T. Bauer and P. Dadam. Flexibility for Dis-
tributed Workflows. In Handbook of Research on Complex Dynamic Process
Management: Techniques for Adaptability in Turbulent Environments, pages
137–171. IGI Global, Hershey, PA, 2009. (Cited on page 125.)

[Reisig 1991] Wolfgang Reisig. Petri nets and algebraic specifications. Theor. Comput.
Sci., vol. 80, pages 1–34, March 1991. (Cited on page 160.)

[Resultmaker 2008] Resultmaker, 2008. http://www.resultmaker.com/. (Cited on
page 197.)

[Rinderle et al. 2003] Stefanie Rinderle, Manfred Reichert and Peter Dadam. Evalua-
tion of Correctness Criteria for Dynamic Workflow Changes. German Research,
pages 41–57, 2003. (Cited on page 55.)

[Rinderle et al. 2004] Stefanie Rinderle, Manfred Reichert and Peter Dadam. Cor-
rectness criteria for dynamic changes in workflow systemsŰŰa survey. Data &
Knowledge Engineering, vol. 50, no. 1, pages 9–34, 2004. (Cited on page 55.)

[Rinderle et al. 2006] Stefanie Rinderle, Andreas Wombacher and Manfred Reichert.
Evolution of Process Choreographies in DYCHOR. In On the Move to Meaningful

http://www.resultmaker.com/

Bibliography 253
Internet Systems 2006: CoopIS, DOA, GADA, and ODBASE, volume 4275 of
LNCS, pages 273–290. Springer, 2006. (Cited on pages 123 and 124.)

[Rummler & Brache 1990] G A Rummler and A P Brache. How to Manage the White
Space on the Organization Chart. JosseyBass Inc California USA, 1990. (Cited
on page 2.)

[Rummler & Brache 1995] Geary A Rummler and Alan P Brache. Improving perfor-
mance: How to manage the white space on the organization chart. Jossey-Bass
Publishers, 1995. (Cited on page 2.)

[Russel & Ter Hofstede 2009] Nick Russel and Arthur H M Ter Hofstede. new YAWL:
Towards Workflow 2.0. Transactions on Petri Nets and Other Models of Con-
currency II, vol. 5460/2009, pages 79–97, 2009. (Cited on page 3.)

[Sadiq et al. 2001] Shazia W Sadiq, Wasim Sadiq and Maria E Orlowska. Pockets of
flexibility in workflow specification. Science, vol. 2224, pages 513–526, 2001.
(Cited on page 56.)

[Sadiq et al. 2006] W. Sadiq, S. Sadiq and K. Schulz. Model Driven Distribution of
Collaborative Business Processes. In Services Computing, 2006. SCC ’06. IEEE
International Conference on, pages 281 –284, sept. 2006. (Cited on page 124.)

[Salaun et al. 2004] G Salaun, L Bordeaux and M Schaerf. Describing and reason-
ing on web services using process algebra. Proceedings IEEE International
Conference on Web Services 2004, vol. 1, no. 2, pages 43–50, 2004. (Cited on
page 160.)

[Sara & Aguilar-Saven 2004] Ruth Sara and Aguilar-Saven. Business process mod-
elling: Review and framework. International Journal of Production Economics,
vol. 90, no. 2, pages 129 – 149, 2004. (Cited on pages 1 and 2.)

[Saunders-Evans & Winskel 2007] Lucy Saunders-Evans and Glynn Winskel. Event
Structure Spans for Nondeterministic Dataflow. Electron. Notes Theor. Comput.
Sci., vol. 175, pages 109–129, June 2007. (Cited on page 48.)

[Scheer 1998] August-Wilhelm W. Scheer. Aris-business process frameworks.
Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2nd édition, 1998. (Cited
on page 5.)

[Scott 1970] D Scott. Outline of a mathematical theory of computation. Fourth Annual
Princeton Conference on Information Sciences and Systems, pages 169–176,
1970. (Cited on page 43.)

[Scott 1976] D Scott. Data Types as Lattices. SIAM Journal on Computing, vol. 5,
no. 3, pages 522–587, 1976. (Cited on page 43.)

[Scott 1982] Dana S Scott. Domains for Denotational Semantics. Automata languages
and programming, no. 140, pages 577–610, 1982. (Cited on page 43.)

254 Bibliography
[Senkul et al. 2002] Pinar Senkul, Michael Kifer and Ismail H. Toroslu. A Logical

Framework for Scheduling Workflows Under Resource Allocation Constraints.
In In VLDB, pages 694–705, 2002. (Cited on pages 7, 52 and 55.)

[Shojania et al. 2007] K. G. Shojania, M. Sampson, M. T. Ansari, J. Ji, S. Doucette
and D. Moher. How quickly do systematic reviews go out of date? A survival
analysis. Ann Intern Med, vol. 147, no. 4, pages 224–233, August 2007. (Cited
on page 29.)

[Shrivastava et al. 1998] Wheater Shrivastava, S. M. Wheater, S. K. Shrivastava and
F. Ranno. A CORBA Compliant Transactional Workflow System for Internet
Applications. In Proc. Of IFIP Intl. Conference on Distributed Systems Platforms
and Open Distributed Processing, Middleware 98, pages 1–85233. Springer-
Verlag, 1998. (Cited on page 125.)

[Sim et al. 2001] I. Sim, P. Gorman, R. A. Greenes, R. B. Haynes, B. Kaplan,
H. Lehmann and P. C. Tang. Clinical decision support systems for the prac-
tice of evidence-based medicine. J Am Med Inform Assoc, vol. 8, no. 6, pages
527–534, 2001. (Cited on page 37.)

[Singh et al. 1995] Munindar P. Singh, Greg Meredith, Christine Tomlinson and
Paul C. Attie. An Event Algebra for Specifying and Scheduling Workflows.
In Proceedings of DASFAA, pages 53–60. World Scientific Press, 1995. (Cited
on pages 7 and 52.)

[Sistla et al. 1983] A.P. Sistla, M. Vardi and P. Wolper. Reasoning about infinite com-
putation paths. In Proceedings of 24th IEEE FOCS, pages 185–194, 1983. (Cited
on pages 24 and 25.)

[Slaats 2009] Tijs Slaats. Workflow and business process execution based on tempo-
ral logic models. Master’s thesis, IT University of Copenhagen, Denmark, 2009.
(Cited on page 39.)

[Spin 2007] Spin. Basic Spin Manual. http://spinroot.com/spin/Man/Manual.
html, 2007. (Cited on pages 16, 159, 168 and 172.)

[Spin 2008] Spin. ON-THE-FLY, LTL MODEL CHECKING with SPIN. Webpage, 2008.
http://spinroot.com/spin/whatispin.html. (Cited on pages 16, 159, 160,
167 and 168.)

[Strong & Miller 1995] Diane M. Strong and Steven M. Miller. Exceptions and ex-
ception handling in computerized information processes. ACM Trans. Inf. Syst.,
vol. 13, pages 206–233, April 1995. (Cited on page 6.)

[ter Hofstede et al. 2003] Arthur ter Hofstede, Rob van Glabbeek and David Stork.
Query Nets: Interacting Workflow Modules That Ensure Global Termination.
In Business Process Management. Springer Berlin / Heidelberg, 2003. (Cited
on page 123.)

http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/Man/Manual.html
http://spinroot.com/spin/whatispin.html

Bibliography 255
[Thorsen & Makela 1999] Thorkil Thorsen and Marjukka Makela, editors. Changing

professional practice., volume Vol. 99.05. Danish Institute for Health Services
Research and Development, 1999. (Cited on page 37.)

[Uppaal-Group 2009] Uppaal-Group. Uppaal Model Checker. Webpage, 2009. http:
//www.uppaal.org/. (Cited on page 203.)

[van der Aalst & Pesic 2006a] Wil M.P van der Aalst and Maja Pesic. A Declarative
Approach for Flexible Business Processes Management. In Proceedings DPM
2006, LNCS. Springer Verlag, 2006. (Cited on pages xiii, 7, 8, 9, 15, 17, 24, 25,
39, 40, 41, 49, 52, 53, 54, 55, 90, 125 and 207.)

[van der Aalst & Pesic 2006b] Wil M.P van der Aalst and Maja Pesic. DecSerFlow:
Towards a Truly Declarative Service Flow Language. In M. Bravetti, M. Nunez
and Gianluigi Zavattaro, editors, Proceedings of Web Services and Formal
Methods (WS-FM 2006), volume 4184 of LNCS, pages 1–23. Springer Verlag,
2006. (Cited on pages 15, 17, 24, 25, 30, 33, 39, 40, 41, 49, 53, 54, 55 and 125.)

[Van Der Aalst et al. 1997] W M P Van Der Aalst, D Hauschildt and H M W Verbeek.
Petri-net-based tool to analyze workflows, pages 78–98. University of Hamburg
(FBI-HH-B-205/97), 1997. (Cited on page 55.)

[van der Aalst et al. 2003] W.M.P. van der Aalst, A. H. M. Ter Hofstede and M. Weske.
Business Process Management: A Survey. In Proceedings of the 1st Interna-
tional Conference on Business Process Management, volume 2678 of LNCS,
pages 1–12. Springer-Verlag, 2003. (Cited on pages xiii, 1, 2, 3, 4, 5 and 6.)

[van der Aalst et al. 2009] Wil M. P. van der Aalst, Maja Pesic and Helen Schonen-
berg. Declarative workflows: Balancing between flexibility and support. Com-
puter Science - R&D, vol. 23, no. 2, pages 99–113, 2009. (Cited on pages 6, 7,
9, 40, 41, 52, 53, 54, 55, 90, 202 and 207.)

[van der Aalst et al. 2010a] Wil van der Aalst, Maja Pesic, Helen Schonenberg,
Michael Westergaard and Fabrizio M. Maggi. Declare. Webpage, 2010.
http://www.win.tue.nl/declare/. (Cited on pages 15, 17, 40, 49, 53 and 197.)

[van der Aalst et al. 2010b] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe,
Christian Stahl and Karsten Wolf. Multiparty Contracts: Agreeing and Imple-
menting Interorganizational Processes. The Computer Journal, vol. 53, no. 1,
pages 90–106, January 2010. (Cited on page 123.)

[van der Aalst 1999a] W. M. P. van der Aalst. Interorganizational Workflows: An Ap-
proach based on Message Sequence Charts and Petri Nets. Systems Analysis -
Modelling - Simulation, vol. 34, no. 3, pages 335–367, 1999. (Cited on page 123.)

[van der Aalst 1999b] W. M. P. van der Aalst. Woflan: a Petri-net-based workflow
analyzer. Syst. Anal. Model. Simul., vol. 35, pages 345–357, May 1999. (Cited
on page 160.)

http://www.uppaal.org/
http://www.uppaal.org/
http://www.win.tue.nl/declare/

256 Bibliography
[van der Aalst 2003] W.M.P. van der Aalst. Inheritance of Interorganizational Work-

flows: How to Agree to Disagree Without Loosing Control? Information Tech-
nology and Management, vol. 4, pages 345–389, 2003. (Cited on page 123.)

[Vanderaalst et al. 2005] W Vanderaalst, M Weske and D Grunbauer. Case handling:
a new paradigm for business process support. Data & Knowledge Engineering,
vol. 53, no. 2, pages 129–162, 2005. (Cited on page 55.)

[Vardi & Wolper 1986] M. Y. Vardi and P. Wolper. An Automata-Theoretic Approach to
Automatic Program Verification. In Symposium on Logic in Computer Science
(LICS’86), pages 332–345, Washington, D.C., USA, June 1986. IEEE Computer
Society Press. (Cited on pages 160, 167 and 168.)

[Verbeek & Aalst 2000] Eric Verbeek and Wil M P Van Der Aalst. Woflan 2.0: a petri-
net-based workflow diagnosis tool, volume 1825, pages 475–484. Springer,
2000. (Cited on page 55.)

[Verbeek & van der Aalst 2000] Eric Verbeek and Wil M. P. van der Aalst. Woflan
2.0: a Petri-net-based workflow diagnosis tool. In Proceedings of the 21st
international conference on Application and theory of petri nets, ICATPN’00,
pages 475–484, Berlin, Heidelberg, 2000. Springer-Verlag. (Cited on page 160.)

[Weske 2007] M. Weske. Business process management: Concepts, languages, archi-
tectures. Springer, 2007. (Cited on page 1.)

[Westergaard 2011] Michael Westergaard. Better Algorithms for Analyzing and En-
acting Declarative Workflow Languages Using LTL. In Proc. of BPM, 2011.
(Cited on page 42.)

[WfMC 1999] WfMC. Workflow Management Coalition Terminology & Glossary. Man-
agement, vol. 39, no. 3, pages 1–65, 1999. http://www.wfmc.org/standards/
docs/TC-1011_term_glossary_v3.pdf. (Cited on page 3.)

[Winskel & Nielsen 1993] Glynn Winskel and Mogens Nielsen. Models for Concur-
rency. Technical Report DAIMI PB-463, Computer Science Department, Aarhus
University, Denmark, 1993. (Cited on pages 43, 45 and 53.)

[Winskel & Nielsen 1995] Glynn Winskel and Mogens Nielsen. Models for Concur-
rency. In S. Abramsky, Dov M. Gabbay and T. S. E. Maibaum, editors, Handbook
of Logic and the Foundations of Computer Science, volume 4, chapter Models
for Concurrency, pages 1–148. Oxford University Press, Oxford, UK, 1995. (Cited
on page 43.)

[Winskel 1982] Glynn Winskel. Event Structure Semantics for CCS and Related Lan-
guages. In Proceedings of the 9th Colloquium on Automata, Languages and
Programming, pages 561–576, London, UK, 1982. Springer-Verlag. (Cited on
page 48.)

http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf
http://www.wfmc.org/standards/docs/TC-1011_term_glossary_v3.pdf

Bibliography 257
[Winskel 1986] Glynn Winskel. Event Structures. In Brauer et al. [Brauer et al. 1987],

pages 325–392. (Cited on pages 15, 17, 43, 49, 53, 89 and 197.)

[Winskel 2011] Glynn Winskel. Events, Causality and Symmetry. The Computer Jour-
nal, vol. 54, no. 1, pages 42–57, 2011. (Cited on page 43.)

[Wodtke & Weikum 1997] Dirk Wodtke and Gerhard Weikum. A Formal Foundation
for Distributed Workflow Execution Based on State Charts. In Proceedings of
the 6th International Conference on Database Theory, pages 230–246, London,
UK, 1997. Springer-Verlag. (Cited on page 123.)

[Workflow Management Coalition 1993] Workflow Management Coalition. Workflow
Management Coalition, 1993. http://www.wfmc.org/. (Cited on page 4.)

[Workflow Management Coalition 2008] Workflow Management Coalition. Process
Definition Interface - XML Process Definition Language. Webpage, Oc-
tober 2008. http://www.wfmc.org/index.php?option=com_docman&task=
doc_download&Itemid=72&gid=132. (Cited on page 4.)

[Yi & Kochut 2004a] X. Yi and K.J Kochut. Process composition of web services with
complex conversation protocols. In Design, Analysis, and Simulation of Dis-
tributed Systems Symposium at Adavanced Simulation Technology, 2004. (Cited
on pages 123 and 124.)

[Yi & Kochut 2004b] Xiaochuan Yi and Krys Kochut. A CP-nets-based Design and
Verification Framework for Web Services Composition. In ICWS’04, pages 756–
760, 2004. (Cited on page 160.)

[Zielonka 1987] W. Zielonka. Notes on finite asynchronous automata. Informatique
Théorique et Applications, vol. 21(2), pages 99–135, 1987. (Cited on page 124.)

[Zisman 1977] M. D. Zisman. Representation, Specification and Automation of Office
Procedures. PhD thesis, Wharton School, University of Pennsylvania, 1977.
(Cited on page 2.)

http://www.wfmc.org/
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&Itemid=72&gid=132
http://www.wfmc.org/index.php?option=com_docman&task=doc_download&Itemid=72&gid=132

	Abstract
	Acknowledgments
	Contents
	List of Tables
	Listings
	List of Figures
	Introduction
	Brief Historical Perspective of Business Processes
	Business Process Management and IT
	BPM Standardization Approaches

	Why Formal Models?
	Motivation for Declarative Models
	Thesis Statement
	TrustCare Project
	Research Goal

	Thesis Outline
	List of Publications
	Chapters Outline

	Background
	Resultmaker Online Consultant - A Declarative Workflow
	Resultmaker Online Consultant - Formalization
	Formalization using Linear Temporal Logic
	Case Study: Healthcare Workflow
	Preliminary conclusion to the case study
	Conclusion

	DECLARE: A Constraint Based Approach For Flexible Workflows
	Process Modeling
	Process Execution
	Conclusion

	Event Structures
	Introduction
	Event Structures, Configurations
	Conclusion

	Summary

	Dynamic Condition Response Graphs
	Motivation
	DCR Graphs as generalized Event Structures

	Related Work
	Dynamic Condition Response Graphs
	Condition Response Event Structures
	DCR Graphs - Formal Semantics
	Distributed Dynamic Condition Response Graphs
	Infinite runs - From DCR Graphs to Büchi-automata

	DCR Graphs - Graphical Notation
	Expressiveness of DCR Graphs
	Büchi Automaton
	Encoding of Büchi Automaton into DCR Graphs - Example
	Bisimulation between Büchi and DCR Graph
	Conclusion

	Summary

	Dynamic Condition Response Graphs - Extensions
	Nested Dynamic Condition Response Graphs
	Nested DCR Graphs by Healthcare Workflow Example
	Nested DCR Graphs - Formal Semantics
	Case Study: Case Management Example In Nested DCR Graphs

	Nested DCR Graphs with Sub Processes
	Formal definition of Nested DCR Graphs with sub processes
	Flattening of Nested DCR Graph with sub processes
	Execution Sematics of DCR Graphs with Subprocesses

	DCR Graphs with Data
	Nested DCR Graphs with Data
	Healthcare Example in DCR Graphs with Data

	Summary

	Distribution of DCR Graphs
	Introduction
	Related Work
	DCR Graphs - Projection and Composition
	Projection
	Composition
	Safe Distributed Synchronous Execution of DCR Graphs
	Distribution of Case Management Example

	Distribution of Nested DCR Graphs
	Projections
	Distributed Execution in Nested DCR Graphs
	Distribution of Healthcare Workflow

	Summary

	Formal Verification, Tools and Implementation
	Related Work
	Safety and Liveness for DCR Graphs
	Executions and Must Executions
	Safety Properties
	Liveness Properties

	Formal Verification using SPIN
	Brief overview of SPIN and PROMELA lanaguage
	Encoding DCR Graphs into PROMELA
	Verification of Safety Properties
	Verification of Liveness Properties

	Formal Verification using ZING
	Prototype Tools
	DCRG Process Engine
	Process Repository
	Windows-based Graphical Editor
	Web Client
	Model Checking Tool
	Serialization Format for DCR Graphs

	Summary

	Conclusion and Future Work
	Conclusion
	Contribution
	Future Work
	Extensions to Formal Model
	Relating to the other formal models

	Appendix PROMELA Code for Verification of Properties
	PROMELA Code for Deadlock Free Property
	PROMELA Code for Strongly Deadlock Free Property
	PROMELA Code for Liveness Property
	PROMELA Code for Strongly Liveness Property

	Appendix Zing Code for Give Medicine Example
	Bibliography

