
Towards a Programming Language for Declarative Event-based
Context-sensitive Reactive Services

Søren Debois Thomas Hildebrandt Raghava Rao Mukkamala Francesco Zanitti
⇤{debois, hilde, rao, frza}@itu.dk

IT University of Copenhagen
Programming, Logic and Semantics Group

Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark

Abstract

We present ongoing work on a new declarative and purely event-based programming language,
tentatively named DECoReS, for Declarative Event-based Context-sensitive Reactive Services. The
language is based on an extension of the recently developed declarative Dynamic Condition Response
(DCR) Graphs model for concurrent processes, which generalizes the classical model of prime event
structures to a systems model in which infinite behavior and progress constraints can be represented
by finite structures. To give semantics for the DECoReS programming language the DCR Graph
model is extended with parametrized events, auto events, sub processes, time and exception handling.

1 Introduction

The Dynamic Condition Response (DCR) Graph model has been developed as part of the CosmoBiz [1]
and TrustCare [2] research projects with the goal to provide a formal foundation for adaptable and flexible
pervasive workflow processes and services as found e.g. within the healthcare domain.

The development of the DCR Graph model takes its outset in the declarative Process Matrix work-
flow model [7, 8] implemented by our industrial partner Resultmaker and generalizes the classical event
structure model for concurrency [10,11] to allow for finite descriptions of infinite behavior (also referred
to as a systems model [9]) and specification of progress constraints.

The key elements of a DCR Graph is a set of (labelled) events (e.g. representing executions of human
activities in a workflow or service requests and responses), two dual relations between events referred
to as the condition and response relations respectively, and two relations for dynamically including and
excluding events from the process.

An unconstrained event can happen at any time and any number of times as long as it is included in
the process. The included conditions of an event e are the events that must happen at some point before
event e happens. Dually, the responses of an event e are the events that must happen at some point after
event e happens, or infinitely often become excluded. Despite its simplicity, the DCR Graph model can
express all w-regular languages and thus in particular all processes that can be specified in Linear-time
Temporal Logic (LTL).

Moreover, the model allows for an intuitive operational semantics and effective execution expressed
by a notion of markings of the graphs. A marking is given by three sets of events (Ex,Re, In), where
Ex is the set of previously executed events, Re the activities required to be executed in the future (i.e.
pending responses), and In is the currently included activities.

⇤Authors listed alphabetically. This research is supported by the Danish Research Agency through a Knowledge Voucher
granted to Exformatics (grant #10-087067, www.exformatics.com), the Trustworthy Pervasive Healthcare Services project
(grant #2106-07-0019, www.trustcare.eu) and the Computer Supported Mobile Adaptive Business Processes project (grant
#274-06-0415, www.cosmobiz.dk). This work funded in part by the Danish Research Agency (grant no.: 2106-080046) and
the IT University of Copenhagen (the Jingling Genies projects).

1

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

The DCR Graph model has been applied to healthcare and cross-organizational case management
processes identified in case studies carried out jointly with industrial partners [3,4]. The case studies led
to extensions of the core model to allow nested events and a new relation between events describing a
milestone relation [5]. An event e is not enabled for execution if any of its included milestones is in the
set Re of pending responses. The case studies also revealed the need for distributed implementations,
which led to the development of a general technique for distributing a DCR Graph based on a notion of
projections [6].

Below we exemplify current work on defining and implementing a new declarative and purely event-
based language based on DCR Graphs, tentatively named DECoReS, for Event-based Context-sensitive
Reactive Services. To support the formal semantics of DECoReS, we propose extending the model of
DCR Graphs with parametrized events, sub processes, automatic events, time and exception handling.

The languages and extensions are illustrated by the following example workflow process adapted
from [7, 3]. The process consists of five events: The prescription of medicine and signing of the pre-
scription by a doctor (represented by the events prescribe and sign respectively), a nurse giving
the medicine to the patient (represented by the event give, and the nurse indicating that he does not
trust the prescription (represented by the event distrust) and the doctor removing the prescription,
represented by the event remove.

treatment process{

doctor may prescribe<$id, $med, $qty> {

response: administer<$id,$med,$qty>

}

administer<$id, $med, $qty> process

{

doctor must sign { exclude: remove }

nurse must give {

condition: Executed(sign) &

not Executed(remove) &

not Response(sign)

exclude: sign, give, distrust, remove

}

nurse may distrust {

response: sign

include: remove

exclude: give

}

doctor may remove {

exclude: sign,give,distrust,remove

}

}

}

To capture that every prescription event prescribe leads to the possible execution of a “fresh”
set of events sign, give, distrust and remove, we propose as the first extension of DCR Graphs
to allow sub process events that instantiate a DCR Graph as a sub process when they are required as a
response. This allows us to group the four events inside the sub process event administer.

The result is a process model which is more expressive than w regular languages but still have an
intuitive operational semantics as dynamically unfolding graphs.

2

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

A third proposed extension is to allow events to be called automatically. Such events are called “auto-
events” and they can be emitted in order to communicate to the external world some important state of
the process.

Finally, we work on adding time deadlines to the constraints, i.e. making it possible to specify that a
given response must happen within a given time interval. This then again leads to the need for handling
violations of such constraints. The modified process below illustrates how time constraints and exception
handling can be added to the language, while also giving a small example of how the language can be
used for implementing context-sensitive services.

doorsensor process {

door may open {

response: close within 15s throw door_left_open

}

door may close

door_left_open process {auto leftopen}

}

In the above sample process, we model a process that senses when a door is being opened and
closed. This is conveniently written using the role door for sensor at the door. The timing constraint
within 15s specifies that in response to an open event, a close one must follow within 15 seconds,
otherwise an instance of the sub process door left openwill be created, which executes an autoevent
leftopen.

Informally, an event that is required as a response can be annotated with a timing constraint
interval in Start within End must happen after Start time units but before End time units;
omitting the Start constraint is a shortcut for in 0 within End. Dually, a timed condition

event, annotated with a time constraint since Start within End, must have happened at least
Start time units before and at most End time units before. Omitting the Start constraint is a shortcut
for since 0 within End.

Lastly, timed responses can be annotated with an throw Event construct, which requires Event
to happen as a response, if the response do not happen within the required interval. Similarly, conditions
may throw such exception events if an event happen and the condition is not satisfied.

References

[1] Thomas Hildebrandt. Computer supported mobile adaptive business processes (CosmoBiz) research project.
Webpage, 2007. http://www.cosmobiz.org/.

[2] Thomas Hildebrandt. Trustworthy pervasive healthcare processes (TrustCare) research project. Webpage,
2008. http://www.trustcare.dk/.

[3] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Declarative modelling and safe distribution
of healthcare workflows. In International Symposium on Foundations of Health Information Engineering
and Systems, Johannesburg, South Africa, August 2011.

[4] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Designing a cross-organizational case man-
agement system using dynamic condition response graphs. In Proceedings of IEEE International EDOC
Conference, 2011. to appear.

[5] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested dynamic condition response graphs.
In Proceedings of Fundamentals of Software Engineering (FSEN), April 2011. to appear.

[6] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Safe distribution of declarative processes. In
9th International Conference on Software Engineering and Formal Methods (SEFM) 2011, 2011. to appear.

3

http://www.cosmobiz.org/
http://www.trustcare.dk/

DECoReS Debois, Hildebrandt, Mukkamala and Zanitti

[7] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala. From paper based clinical practice
guidelines to declarative workflow management. In Proceedings of 2nd International Workshop on Process-
oriented information systems in healthcare (ProHealth 08), pages 36–43, Milan, Italy, 2008. BPM 2008
Workshops.

[8] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth. The resultmaker online consultant:
From declarative workflow management in practice to LTL. In Proceeding of DDBP, 2008.

[9] Vladimiro Sassone, Mogens Nielsen, and Glynn Winskel. A classification of models for concurrency. In
Proceedings of CONCUR’93, volume 715 of LNCS, 1993.

[10] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig, and Grzegorz Rozenberg, editors,
Advances in Petri Nets, volume 255 of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[11] Glynn Winskel and Mogens Nielsen. Models for concurrency. pages 1–148, 1995.

4

	Introduction

