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Abstract. We give a general technique for safe distribution of a declarative (global)
process as a network of (local) synchronously communicating declarative pro-
cesses. Both the global and local processes are given as Dynamic Condition Re-
sponse (DCR) Graphs. DCR Graphs is a recently introduced declarative process
model generalizing labelled prime event structures to a systems model able to
finitely represent !-regular languages. An operational semantics given as a tran-
sition semantics between markings of the graph allows DCR Graphs to be conve-
niently used as both specification and execution model. The technique for distri-
bution is based on a new general notion of projection of DCR Graphs relative to a
subset of labels and events identifying the set of external events that must be com-
municated from the other processes in the network in order for the distribution to
be safe. We prove that for any vector of projections that covers a DCR Graph that
the network of synchronously communicating DCR Graphs given by the projec-
tions is bisimilar to the original global process graph. We exemplify the distribu-
tion technique on a process identified in a case study of an cross-organizational
case management system carried out jointly with Exformatics A/S.

Keywords: formal specification, distributed synthesis, cross-organizational workflow,
declarative processes, process composition

1 Introduction

A model-driven software engineering approach to distributed information systems typi-
cally include both global models describing the collective behavior of the system being
developed and local models describing the behavior of the individual peers or compo-
nents.

The global and local descriptions should be consistent. If the modeling languages
have formal semantics and the local model language support composition of individual
processes, the consistency can be formally established, which we will refer to as the
consistency problem: Given a global model and a set of local models, is the behavior of
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the composition of the local models consistent with the global model? In order to sup-
port ”top-down” model-driven engineering starting from the global model, one should
address the more challenging distributed synthesis problem: Given a global model and
some formal description of how the model should be distributed, can we synthesize a
set of local processes with respect to this distribution which are consistent to the the
global model?

In past work, briefly surveyed below, the result of the distributed synthesis have been
a network of local processes described in an imperative process model, e.g. as a network
of typed pi-calculus processes or a product automaton. The global process description
has either been given declaratively, e.g. in some temporal logic, or imperatively, e.g. as
a choreography or more generally a transition system.

In the present paper we address the distributed synthesis problem in a setting where
both the global and the local processes are described declaratively as Dynamic Con-
dition Response Graphs (DCR Graphs). DCR Graphs is a declarative workflow model
introduced previously in [14, 15] as a generalization of the classical event structure
model [47] allowing finite specification of infinite or iterative behavior (by allowing
events to be executed more than once and replacing the symmetric conflict relation by
asymmetric exclusion and (re-)inclusion relations) and specification of progress con-
ditions (by replacing the causal order relation of event structures with two relations,
respectively defining the conditions for and required responses to the execution of an
event).

The motivation for introducing the DCR Graph model is to give, as part of the
Trustworthy Pervasive Healthcare Services [13] project, a declarative model that can be
used both as specification language and execution language for flexible workflow and
business process. Indeed, the DCR Graphs model is inspired by and formalizes the core
primitives of the process model employed by the industrial partner (Resultmaker) in the
TrustCare project and is now being implemented in the workflow engine developed at
Exformatics. As identified in e.g. [6,43] declarative process languages make it easier to
specify loosely constrained systems. Also, we believe the declarative approach is more
promising when it comes to composition, and (dynamic) changes of processes which is
one of the main objectives of the TrustCare project.

To safely distribute a DCR Graph we first define (Def. 3, Sec. 3.1) a new general
notion of projection of DCR Graphs relative to a subset of labels and events. The key
point is to identify the set of events that must be communicated from other processes
in the network in order for the state of the local process to stay consistent with the
global specification (Prop. 1, Sec. 3). To also enable the reverse operation, building
global graphs from local graphs, we then define the composition of two DCR Graphs,
essentially by gluing joint events. As a sanity check we prove (Prop. 2, Sec. 3.2) that if
we have a collection of projections of a DCR Graph that cover the original graph (Def. 7,
Sec. 3.2) then the composition yields back the same graph. We then finally proceed to
the main technical result, defining networks of synchronously communicating DCR
Graphs and stating (in Thm. 1, Sec. 3.3) the correspondence between a global process
and a network of communicating DCR Graphs obtained from a covering projection
(relying on Prop. 1). Throughout the paper we exemplify the distribution technique on
a simple cross-organizational process identified within a case study carried out jointly
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with Exformatics A/S using DCR Graphs for model-driven design and engineering of
an inter-organizational case management system. We conclude in Sec. 4 and provide
pointers to future work.

1.1 Related Work

There are many researchers [1, 20, 21, 40–42, 46] who have explicitly focussed on the
problem of verifying the correctness of inter-organizational workflows in the domain
of petri nets. In [41], message sequence charts are used to model the interaction be-
tween the participant workflows that are modeled using petri nets and the overall work-
flow is checked for consistency against an interaction structure specified in message
sequence charts. In [20] Kindler et. al. followed a similar but more formal and con-
crete approach, where the interaction of different workflows is specified using a set
of scenarios given as sequence diagrams and using criteria of local soundness and
composition theorem, guaranteed the global soundness of an inter-organizational work-
flow. The authors in [40] proposed Query Nets based on predicate/transition petri nets
to guarantee global termination, without the need for having the global specification.
The work on workflow nets [1, 46] use a P2P (Public-To-Private) approach to parti-
tion a shared public view of an inter-organizational workflow over its participating en-
tities and projection inheritance is used to generate a private view that is a subclass
to the relevant public view, to guarantee the deadlock and livelock freedom. Further a
more liberal and a weaker notion than projection inheritance, accordance has been used
in [42] to guarantee the weak termination in the multiparty contracts based on open nets.

Fig. 1. Key problems studied in related work

Modeling global
behavior as a set of
conversations among
participating services
has been studied by
many researchers [2,
3, 11, 35, 48, 49] in
the area business pro-
cesses. An approach
based on guarded au-
tomata studied in [11],
for the realizability
analysis of conver-
sation protocols, whereas
the authors in [49]
used colored petri nets to capture the complex conversations. A framework for cal-
culating and controlled propagation of changes to the process choreographies based
on the modifications to partner’s private processes has been studied in [35]. Similarly,
but using process calculus to model service contracts, Bravetti-Zavattaro proposed con-
formance notion for service composition in [2] and further enhanced their correctness
criteria in [3] by the notion of strong service compliance.

Researchers [9,19,23,29] in the web services community have been working on web
service composition and decentralized process execution using BPEL [30] and other re-
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lated technologies to model the web services. A technique to partition a composite web
service using program analysis was studied in [29] and on the similar approach, [19]
explored decomposition of a business process modeled in BPEL, primarily focussing
on P2P interactions . Using a formal approach based on I/O automata representing the
services, the authors in [23] have studied the problem of synthesizing a decentralized
choreography strategy, that will have optimal overhead of service composition in terms
of costs associated with each interaction.

The derivation of descriptions of local components from a global model has been
researched for the imperative choreography language WS-CDL in the work on struc-
tured communication-centred programming for web services by Carbone, Honda and
Yoshida [4]. To put it briefly, the work formalizes the core of WS-CDL as the global
process calculus and defines a formal theory of end-point projections projecting the
global process calculus to abstract descriptions of the behavior of each of the local
”end-points” given as pi-calculus processes typed with session types.

A methodology for deriving process descriptions from a business contract formal-
ized in a formal contract language was studied in [22], while [36] proposes an approach
to extract a distributed process model from collaborative business process. In [9, 10],
the authors have proposed a technique for the flexible decentralization of a process
specification with necessary synchronization between the processing entities using de-
pendency tables.

In [5, 12, 27] foundational work has been made on synthesizing distributed transi-
tion systems from global specification for the models of synchronous product and asyn-
chronous automata [50]. In [27] Mukund categorized structural and behavioral charac-
terizations of the synthesis problem for synchronous and loosely cooperating commu-
nication systems based on three different notions of equivalence: state space, language
and bisimulation equivalence. Further Castellani et. al. [5] characterized when an an ar-
bitrary transition system is isomorphic to its product transition systems with a specified
distribution of actions and they have shown that for finite state specifications, a finite
state distributed implementation can be synthesized. Complexity results for distributed
synthesis problems for the three notions of equivalences were studied in [12].

Many commercial and research workflow management systems also support dis-
tributed workflow execution and some of them even support ad-hoc changes as well.
ADEPT [34], Exotica [24], ORBWork [7], Rainman [31] and Newcastle-Nortel [39]
are some of the distributed workflow management systems. A good overview and dis-
cussion about distributed workflow management systems can be found in [32, 33].

So far the formalisms discussed above are more or less confined to imperative mod-
eling languages such as Petri nets, workflow/open nets and automata based languages.
To the best of our knowledge, there exists very few works [8, 25] that have studied the
synthesis problem in declarative modeling languages and none where both the global
and local processes are given declaratively. In [8], Fahland has studied synthesizing
declarative workflows expressed in DecSerFlow [45] by translating to Petri nets. Only
a predefined set of DecSerFlow constraints are used in the mapping to the Petri nets
patterns, so this approach has a limitation with regards to the extensibility of the Dec-
SerFlow language. On the other hand, in [25] Montali has studied the composition of
ConDec [44] models with respect to conformance with a given choreography, based on
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the compatibility of the local ConDec models. But his study was limited to only com-
position, whereas the problem of synthesizing local models from a global model has
not been studied.

2 Dynamic Condition Response Graphs

Dynamic Condition Response (DCR) Graphs has recently been introduced [15] as a
declarative process model generalizing labelled event structures [47] to allow finite rep-
resentations of infinite behavior (i.e. a systems model [37, 38]) and representation of
progress properties.

A DCR Graph consists of a set of labelled events, a marking defining the executed
events, pending response events and included events, and four binary relations between
the events, defining the temporal constraints between events and dynamic inclusion and
exclusion of events.

We employ the following notations in the rest of the paper.
Notation: For a set A we write P(A) for the power set of A. For a binary relation
!✓ A ⇥ A and a subset ⇠ ✓ A of A we write ! ⇠ and ⇠ ! for the set {a 2 A |
(9a0 2 ⇠ | a ! a0)} and the set {a 2 A | (9a0 2 ⇠ | a0 ! a)} respectively. Also, we
write !�1 for the inverse relation. Finally, for a natural number k we write [k] for the
set {1, 2, . . . , k}.

We then formally define a DCR Graph as follows.

Definition 1. A Dynamic Condition Response Graph G is a tuple (EG,MG,!•, •!
,±, LG, lG), where

(i) EG is the set of events
(ii) MG = (ExG,ReG, InG) 2 P(EG)⇥ P(EG)⇥ P(EG) is the marking,

(iii) !•✓ EG ⇥ EG is the condition relation
(iv) •!✓ EG ⇥ EG is the response relation
(v) ± : EG ⇥ EG * {+,%} is a partial function defining the dynamic inclusion and

exclusion relations by e !+ e0 if ±(e, e0) = + and e !% e0 if ±(e, e0) = %
(vi) LG is the set of labels

(vii) lG : EG ! P(LG) is a labeling function mapping events to sets of labels.

We write M(G) for the set P(EG)⇥ P(EG)⇥ P(EG) of markings of G.

The marking MG = (ExG,ReG, InG) is a tuple of three sets defining respectively the
previously executed events (ExG), the set of required responses (ReG), and the currently
included events (InG). The set of required responses are the events that must eventu-
ally be executed (or excluded) in order to accept the execution, also referred to as the
pending responses. The set of included events are the events that currently are relevant
for conditions and may be executed (if their conditions are met). The condition relation
!• defines which (of the currently included) events must have been executed before an
event can be executed. That is, for an event e to be executed, it must be included, i.e.
e 2 InG and the included conditions must be executed: (!• e) \ InG ✓ ExG. The re-
sponse relation •! defines which responses are required after executing an event. That
is, if the event e is executed, the events e •! are added to the set of required responses
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in the marking. The dynamic inclusion and exclusion relations define how the set of
included events changes by executing an event: If the event e is executed, the events
e !+ are added to the set of included events in the marking and the events e !%
are removed. Finally, an event is labelled by zero or more labels. (This is slightly more
general than previous work, where labels of events were sets of triples consisting of an
action, a role and a principal.)

Fig. 2 below shows an example DCR Graph identified during the development by
Exformatics of a cross-organizational case management system for the umbrella orga-
nization of unions in Denmark, named LO.

Fig. 2. Cross-organizational case management example

The graph has 7 events, drawn as boxes with ”ears”, and captures a process of cre-
ating a case, agreeing on meeting dates and holding meetings. The names of the events
are written inside the box and the set of actions for each event, representing the roles
that can execute the event, is written inside the ”ear”. That is, the event Create Case
in the upper left has label U and represents the creation of a case by a case manager at
a union (role U). The rightmost event, Hold meeting has two different labels, LO and
DA, representing a meeting held by LO and DA (the umbrella organization of employ-
ers) respectively.

The semantics for DCR Graphs has been given in [14, 15] as a labelled transition
system with acceptance condition for infinite computations. The set of accepted runs of
DCR Graphs was characterized by a mapping to Büchi-automata in [26].

Definition 2. For a DCR Graph G = (EG,MG,!•, •!,±, LG, lG), we define the cor-
responding labelled transition system TS(G) to be the tuple (M(G),MG, EL(G),!)
where EL(G) = EG⇥LG is the set of labels of the transition system, MG = (ExG, InG,ReG) 2
M(G) is the initial marking, and !✓ M(G) ⇥ EL(G) ⇥M(G) is the transition re-

lation defined by MG
0 (e,a)���! MG

00 if

(i) MG
0 = (ExG

0, InG
0,ReG

0) is the marking before transition
(ii) MG

00 = (ExG
00, InG

00,ReG
00) is the marking after transition
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(iii) e 2 InG
0, a 2 lG(e)

(iv) !•e \InG0 ✓ ExG
0,

(v) ExG
00 = ExG

0 [ {e}
(vi) InG

00 = (InG
0 [ e!+) \ e!%,

(vii) ReG
00 = (ReG

0 \ {e}) [ e•!,

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions MG
i

(ei,ai)����! MG
i+1 starting from the initial marking. We define

a run to be accepting if for the underlying sequence of transitions it holds that 8i �
0, e 2 ReG

i

.9j � i.(e = e
j

_ e 62 InG
j+1). In words, a run is accepting if every

response event either happen at some later state or become excluded.

Condition (iii) in the above definition expresses that, only events that are currently in-
cluded and mapped to the labels in LG can be executed, Condition (iv) requires that
all condition events to e which are currently included should have been executed previ-
ously. Condition (v), (vi) and (vii) are the updates to the sets of executed, included events
and required responses respectively. Note that an event e0 can not be both included and
excluded by the same event e, but an event may trigger itself as a response.

To ease keeping track of transition systems of different DCR Graphs we extend the

transition system to transitions between graphs in the obvious way, writing G
(e,a)���! G0

if G = (EG,MG,!•, •!,±, LG, lG), MG
(e,a)���! MG

0 in TS(G) and G0 = (EG,MG
0,!•

, •!,±, LG, lG).

3 Projection and Composition

In this section we define projections and compositions of dynamic condition response
graphs.

3.1 Projection

First we define how to project a DCR Graph G with respect to a projection parameter
� = (E

�

, L
�

), where E

�

✓ EG is a subset of the events of G and L

�

✓ LG is a subset of
the labels.

Intuitivly, the projection G|� contains only those events and relations that are rele-
vant for the execution of events in E

�

and the labeling is restricted to the set L
�

. This
includes both the events in E

�

and any other event that can affect the marking, or ability
to execute of an event in E

�

through one or more relations.

Definition 3. If G = (EG,MG,!•, •!,±, LG, l) then G|� = (EG|�,MG|�,!•|�, •!|�
,±|�, L�, l|�) is the projection of G with respect to � ✓ EG where:

(i) EG|� =!E

�

, for !=
[

c2C

c, and C = {id,!•, •!,!+,!%,!+!•,!%!•}

(ii) l|�(e) =

(
lG(e) \ L

�

if e 2 E

�

; if e 2 EG|�\E�
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(a) Projection Over
Role U

(b) Projection Over Role DA

(c) Projection Over Role LO

Fig. 3. Projecting of Arrange Meeting Example Over Roles

(iii) MG|� = (ExG|�,ReG|�, InG|�) where:
(a) ExG|� = ExG \ EG|�
(b) ReG|� = ReG \ E

�

(c) InG|� = (InG \ ((id[ !•)E
�

)) [ (EG|� \ ((id[ !•)E
�

))
(iv) !•|�=!• \((!• E

�

)⇥ E

�

)
(v) •!|�=•! \((•! E

�

)⇥ E

�

)
(vi) !+|�=!+ \(((!+!• E

�

)⇥ (!• E

�

)) [ ((!+ E

�

)⇥ E

�

))
(vii) !%|�=!% \(((!%!• E

�

)⇥ (!• E

�

)) [ ((!% E

�

)⇥ E

�

))

(i) defines the set of events as the union of the set E
�

of events that we project over,
any event that has a direct relation towards an event in E

�

and events that exclude or
include an event which is a condition for an event in E

�

. The additional events will be
included in the projection without labels, as can be seen from the definition of the la-
beling function in (ii). This means that the events can not be executed locally. However,
when composed in a network containing other processes that can execute these events,
their execution will be communicated to the process. For this reason we refer to these
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events as the (additional) external events of the projection. As proven in Prop. 1 the
communication of the execution of this set of external events in addition to the local
events shared by others ensure that the local state of the projection stay consistent with
the global state. (iii) defines the projection of the marking: The executed events remain
the same, but are limited to the events in EG|� . The responses are limited to events in E

�

because these are the only responses that will affect the local execution of the projected
graph. The set of included events remains the same for events in E

�

or E
�

!•, because
these can affect which events are enabled in the projected graph. All other external
events of the projected graph are included regardless of their state in the marking of the
global graph. This is because in the local process is only notified of the execution of
these events, not their in- or exclusion. Finally, (iv), (v), (vi) and (vii) state which rela-
tions should be included in the projection. For the events in E

�

all incoming relations
should be included. Additionally inclusion and exclusion relations to events that are a
condition for an event in E

�

are included as well.
To define networks of communicating DCR Graphs and their semantics we use the

following extension of a DCR Graph allowing any event to be executed with a special
input label. These transitions will only be used for the communication in a network and
thus not be visible as user events.

Definition 4. For a DCR Graph G = (EG,MG,!•, •!,±, LG, l) define G[ = (EG,MG,!•
, •!,±, LG [ {[}, l[), where l[ = l(e) [ {[} (assuming that [ 62 LG).

We are now ready to state the key correspondence between global execution of
events and the local execution of events in a projection.

Proposition 1. Let G = (EG,MG,!•, •!,±, LG, l) be a DCR Graph and G|� its pro-
jection with respect to a projection parameter � = (E

�

, L
�

). Then

1. for e 2 E

�

it holds that G
(e,a)���! G0 if and only if G|�

(e,a)���! G0
|� ,

2. for e 62 EG|� it holds that G
(e,a)���! G0 implies G|� = G0

|� ,

3. for e 2 EG|� it holds that G
(e,a)���! G0 implies (G|�)

[

(e,[)���! (G0
|�)

[,

3.2 Composition

Now we define the binary composition of two DCR Graphs. Intuitively, the composition
of G1 and G2 glues together the events that are both in G1 and G2.

Definition 5. Formally, the composite G1 � G2 = (EG,MG,!•, •!,±, LG, l), where
G

i

= (EG
i

,MG
i

,!•
i

, •!
i

,±
i

, LG
i

, l
i

), MG
i

= (ExG
i

,ReG
i

, InG
i

) and:

(i) EG = (EG1 [ EG2)
(ii) MG = (ExG,ReG, InG), where:

(a) ExG = ExG1 [ ExG2

(b) InG = (InG1 [ InG2) \ (((EG
i

1[ !•EG
i

1) \ InG1) [ ((EG
i

2[ !•EG
i

2) \ InG2))
(c) ReG = ReG1 [ ReG2

for EG
i

j

= {e 2 EG
j

| l
j

(e) 6= ;}
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(iii) !=!1 [ !2 for each !2 {!•, •!,!+,!%}
(iv) l(e) = l1(e) [ l2(e)
(v) LG = LG1 [ LG2

(iib) states that events are included, if they’re either included in G1 or G2, unless
they are events that are either internal or have a condition towards an internal event
and are excluded in G1 or G2. The intuition here is that if an event is internal or has a
condition towards an internal event, then it affects the enabled events of the graph, so
it’s inclusion status should be the same in the composed graph. The inclusion/exclusion
status of other external events however may simply not have been updated because the
graph is not aware of all relations towards these events. This is not unsafe because
the inclusion of these events does not affect the execution of the graph. Therefor the
definition states that if an event is internal or has a condition towards an internal event
in G1 or G2, then it’s inclusion status should be the same in the composed graph, and
in any other case the event is included if it was included in G1 or G2. (iic) states that
the events with pending responses are those events that have a pending response in G1

or G2.

Definition 6. The composition G1 � G2 is well-defined when:

(i) 8(e 2 EG1 \ EG2 | (e 2 ExG1 , e 2 ExG2)
(ii) 8(e 2 (EG

i

1[ !•EG
i

1) \ (EG
i

2[ !•EG
i

2) | (e 2 InG1 , e 2 InG2)
(iii) 8(e 2 EG

i

1 \ EG
i

2 | (e 2 ReG1 , e 2 ReG2)
(iv) 8(e, e0 2 EG1 \ EG2 | ¬((e !+1 e0 ^ e !%2 e0) _ (e !%1 e0 ^ e !+2 e0)))

(i) ensures that those events that will be glued together have the same execution
marking. (ii) ensures that events that will be glued together and in both DCR Graphs
belong to either the set of internal events or the set of events that have a conditional
relation towards an internal event, have the same inclusion marking. (iii) ensures that
events that will be glued together and in both DCR Graphs belong to the set of internal
events have the same pending response marking. (iv) ensures that by composing the
two DCR Graphs no event both includes and excludes the same event. If G1 � G2 is
well-defined, then we also say that G1 and G2 are composable with respect to eachother.

Lemma 1. The composition operator � is commutative and associative.

Definition 7. We call a vector � = �1 . . . �k of projection parameters covering for
some DCR Graph G = (EG,MG,!•, •!,±, LG, lG) if:

1.
[

i2[k]

E

�

i

= EG and

2. (8a 2 LG.8e 2 EG.a 2 lG(e) ) (9i 2 [k].e 2 E

�

i

^ a 2 L

�

i

)

Proposition 2. If some vector � = �1 . . . �k of projection parameters is covering for
some DCR Graph G then:

M

i2[k]

G|�i = G



Safe Distribution of Declarative Processes 11

3.3 Safe Distributed Synchronous Execution

In this section we define networks of synchronously communicating DCR Graphs and
prove the main technical theorem of the paper stating that a network of synchronously
communicating DCR Graphs obtained by projecting a DCR Graph G with respect to a
covering set of projection parameters has the same behavior as the original graph G.

Definition 8. We define a network of synchronously communicating DCR Graphs N
by the grammar

N := G | NkN

and let NE⇥L be the set of all networks with events in E and labels in L.
We write ⇧

i2[n]Gi

for G1kG2k . . . kGn

. We define the set of events of a network
of graphs inductively by E(G) = EG and E(N1kN2) = E(N1) [ E(N2). Similarly,
we define the set of labels of a network of graphs inductively by L(G) = LG and
L(N1kN2) = L(N1) [ L(N2).

Definition 9. The semantics of networks of buffered DCR Graphs are given by the fol-
lowing inference rules:

input
G[

1
(e,[)���! G[

2

G1
Be G2

sync input
N1

Be N 0
1 N2

Be N 0
2

N1kN2
Be N 0

1kN 0
2

local input
N

i

Be N 0
i

e /2 E(N1�i

)

N0kN1
Be N 0

0kN1

N1�i

= N 0
1�i

, i 2 {0, 1}

sync step
N

i

(e,a)���! N 0
i

N1�i

Be N 0
1�i

N0kN1
(e,a)���! N 0

0kN 0
1

i 2 {0, 1}

local step
N

i

(e,a)���! N 0
i

e /2 E(N
i�1)

N0kN1
(e,a)���! N 0

0kN1

N1�i

= N 0
1�i

, i 2 {0, 1}

For a network of synchronously communicating DCR Graphs N we define the corre-
sponding transition system TS(N) by (NEL(N), N, EL(N),!✓ NEL(N) ⇥ EL(N)⇥
NEL(N)) where EL(N) = E(N) ⇥ L(N) and the transition relation !✓ NEL(N) ⇥
EL(N)⇥NEL(N) is defined by the inference rules above.

We define a run a0, a1, . . . of the transition system to be a sequence of labels of a

sequence of transitions N
i

(ei,ai)����! N
i+1 starting from the initial network. We define

a run for a network N = ⇧
i2[n]Gi

to be accepting if for the underlying sequence of
transitions it holds that 8j 2 [n], 8i � 0, e 2 ReG

j,i

.9k � i.(e = e
k

_ e 62 InG
j,k+1),
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where ReG
j,i

is the set of required responses in the jth DCR Graph in the network in
the ith step of the run. In words, a run is accepting if every response event in a local
DCR Graph in the network either happen at some later state or become excluded.

We are now ready to give the main theorem of the paper, stating the correspondence
between a global DCR Graph and the network of synchronously communicating DCR
Graph obtained from a covering projection.

Theorem 1. For a Dynamic Condition Response Graph G and a covering vector of
projection parameters � = �1 . . . �n it holds that TS(G) is bisimilar to TS(G�),
where G� = ⇧

i2[n]G|�i . Moreover, a run is accepting in TS(G) if and only if the
bisimilar run is accepting in TS(G�).

3.4 Example

In this section, we will use the arrange meeting example from Sec. 1 and show how
events are executed in distributed setting. We assume the arrange meeting example is
projected to a network G1

u

|| G1
da

|| G1
lo

of three DCR Graphs as shown in the Fig. 3
and described in Sec. 3 and abbreviate the names for the events.

1. Using sync step, local input, and input we get the transition G1
u

|| G1
da

|| G1
lo

(Cc,U)����!
G2

u

|| G1
da

|| G2
lo

capturing the local execution of the event Cc labelled with U in
G1

u

which is communicated synchronously to G1
lo

. This updates the markings by
adding the event Cc to the set of executed events in both G1

u

and G1
lo

. But since
Cc has an exclude relation to itself in both G1

u

and G1
lo

(see Fig. 3(a) and 3(c)), the
event is also excluded from the set of included events in both markings. Finally,
because of the response relation to the event PdLO in G1

lo

(see Fig. 3(c)), the event
PdLO is added to the set of required responses in the resulting marking G2

lo

.
2. We can now execute the event PdLO in the DCR graph G2

lo

concurrently with the
event Uc in DCR graph G2

u

.
As the event Uc is only local to G2

u

we get by using local step the transition G2
u

||
G1

da

|| G2
lo

(Uc,U)����! G3
u

|| G1
da

|| G2
lo

that only updates the marking of G2
u

.
In addition to being local to G2

lo

, the event PdLO is also external event in graph
G1

da

, so as in the first step by using sync step local input, and input we get the

transition G3
u

|| G1
da

|| G2
lo

(PdLO,LO)������! G3
u

|| G2
da

|| G3
lo

, where the event PdLO has
been added to the executed event set of both the marking of G1

da

and G2
lo

. Again,
because of the self-exclusion relations, the event PdLO is also excluded from the
sets of included events in the two markings, and because of the response relations,
the events ADA and Hm are added to the set of pending responses in G1

da

and the
event Hm is added to the set of pending responses in G2

lo

.
3. In response to the dates proposed by LO, the DA may choose to propose new dates

by executing the event PdDA in the graph graph G2
da

.

G3
u

|| G2
da

|| G3
lo

(PdDA,DA)������! G3
u

|| G3
da

|| G4
lo

This triggers the exclusion of
the events PdDA and ADA and the inclusion of the events PdLO and ALO in the
markings of both G2

da

and G3
lo

. It will also include the event ALO in the required
response set in the resulting marking G4

lo

.
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4. Now LOmay choose to accept the new dates proposed by DA by executing the event
ALO in the graph graph G4

lo

, giving the transition

G3
u

|| G3
da

|| G4
lo

(ALO,LO))������! G3
u

|| G4
da

|| G5
lo

. This records the event ALO as
executed in markings of both G4

da

and G5
lo

and excludes PdLO in both markings
(i.e. it is not possible to propose new dates after acceptance).

5. Since the event ALO is recorded as executed in markings of both G4
da

and G5
lo

and the event ADA is excluded, the hold meeting event Hm will be enabled in both
graphs G5

lo

and G4
da

. The LO may choose to hold the meeting, giving the transition

G3
u

| BG4
da

|| G5
lo

(Hm,LO)����! G3
u

|| G5
da

|| G6
lo

Note that this event is also communicated to DA, added to the set of executed events
and removed from the set of pending responses. Since there are no pending re-
sponses in any of the local graphs the finite run is in an accepting state.

4 Conclusion

We have given a general technique for distributing a declarative (global) process as a
network of synchronously communicating (local) declarative processes and proven the
global and distributed execution to be equivalent.

The global and local processes are given as Dynamic Condition Response (DCR)
Graphs, a recently introduced declarative process model generalizing labelled prime
event structures to a systems model able to finitely represent !-regular languages. The
DCR Graph model has the advantage that it is on the one hand declarative and compo-
sitional, and on the other hand it has a simple and intuitive operational semantics given
as a transition semantics between markings of the graph. This allows the model to be
used both as specification and execution model.

As briefly surveyed in Sec. 1.1 there have been a lot of related work on synthesis of
distributed systems and proving consistency with respect to a global model or property.
We believe this is the first treatment where both the local and global models are given
declaratively in the same model. This maintains the flexibility of a declarative model
for the local processes, and allows local processes to be further distributed if necessary.

We exemplified the safe distribution technique on a process identified in a case study
of an inter-organizational case management system carried out jointly with Exformatics
A/S.

We leave for future work to study the harder problem of asynchronously commu-
nicating distributed processes. This may benefit from researching the true concurrency
semantics inherent in the model and extend the transition semantics to include con-
currency, e.g. like in [18, 28]. We also plan to study behavioral types describing the
interfaces between communicating DCR Graphs, extending the work on session types
in [4] to a declarative setting. Moreover, we intend to address extension of the DCR
Graph model with time, data and dynamic instantiation of sub processes (also referred
to multiple instances) to be able to model more realistic workflow processes. A first
step is taken in [17] extending DCR Graphs to allow nested sub graphs. This exten-
sion introduced an additional relation between events, the milestone relation, making
it possible to express the acceptance of a sub graph succinctly. We believe the results
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in the present paper can be extended to nested DCR Graphs and the milestone relation,
although it will complicate the definition of projections.

Finally, we plan to continue the ongoing implementation of tools for DCR Graphs,
and in particular to implement the safe distribution technique in the current prototype
design and simulation tools briefly described in [16].
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