
Designing a Cross-organizational Case Management
System using Dynamic Condition Response Graphs

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Raghava Rao Mukkamala
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

rao@itu.dk

Tijs Slaats
IT University of Copenhagen and

Exformatics A/S
2100 Copenhagen, Denmark

tslaats@itu.dk

Abstract—We present a case study of the use of Dynamic Con-
dition Response (DCR) Graphs, a recently introduced declarative
business process model, in the design of a cross-organizational
case management system being developed by Exformatics A/S,
a Danish provider of knowledge and workflow management
systems. We show how DCR Graphs allow to capture directly
both the behavioral constraints identified during meetings with
the customer and the operational execution as markings of the
graph. In comparison, imperative models such as BPMN, Petri
Net, UML Sequence or Activity diagrams are only good at
describing the operational way to fulfill the constraints, leaving
the constraints implicit. In particular, we point out that the
BPMN ad-hoc sub process activity, intended to support more
loosely structured goal driven ad-hoc processes, is inconsistently
described in the final version of the BPMN 2.0 standard. The
case study motivated an extension of the DCR Graphs model
to nested graphs and the development of graphical design and
simulation tools to increase the understanding of the models. The
study also revealed a number of challenges for future research
in techniques for model-driven design of cross-organizational
process-aware information systems combining declarative and
imperative models.

Index Terms—Case Study, Declarative Workflow, Model-driven
Design

I. INTRODUCTION

The purpose of a Case Management System as used in for
instance Human Resource (HR) departments, hospitals, finan-
cial, and governmental institutions, is to guide case workers to
perform the right tasks and to record the history of the case.

Since the initial work on office automation and workflow
systems [9], [10], [32] it has been advocated to base the
implementation of such systems, subsequently referred to as
process-aware information systems [8], on explicit process de-
scriptions described in some high-level process notation such
as Petri Net or UML activity diagrams. The key motivations
for using explicit process models are to allow the system to be
more easily adapted to different work processes and to make
the rules governing the system more visible to the users.

Authors listed alphabetically. This research is supported by the Danish
Research Agency through a Knowledge Voucher granted to Exformatics (grant
#10-087067, www.exformatics.com), the Trustworthy Pervasive Healthcare
Services project (grant #2106-07-0019, www.trustcare.eu) and the Computer
Supported Mobile Adaptive Business Processes project (grant #274-06-0415,
www.cosmobiz.dk).

The rise of web service standards such as SOAP, WSDL
and WS-BPEL has given new momentum to process-aware
information systems. SOAP and WSDL standardize how to
access external IT systems as web services in a service
oriented architecture and WS-BPEL provides a standard high-
level programming language for combining individual service
calls into process flows, also referred to as a process or-
chestration. Following WS-BPEL, the BPEL4People [1] and
WS-HumanTask [20] specifications were the first attempt to
standardize the inclusion of human tasks into BPEL to encom-
pass workflows. Moreover, W3C started in 2004 developing
the Web Services Choreography Description Language (WS-
CDL) [29] which can be used to provide a global view of
the intended interactions between different actors of a system,
similar to the view of interactions provided by UML sequence
diagrams. Within the last 5 years focus has moved from WS-
BPEL and BPEL4People to the development of Business Pro-
cess Model and Notation (BPMN) [19] which standardizes the
graphical notation used for business processes, encompassing
both human and automated tasks, and including both notations
for orchestrations and choreographies.

However, as pointed out in e.g. [10], [27], the imperative
process notations with explicit control and message flows
underlying all of the above models describe the operational-
ization of business process goals and constraints, and not the
goals and constraints themselves. Consequently, the notations
are best suited for well-defined, rigid and repeatable workflows
following a predefined sequence of service invocations and
human tasks and one need to use ad hoc annotations to record
the constraints and goals of the process. Moreover, it has
proven to be non-trivial to support changes of the processes
on-the-fly [26]. This does not match well the typical more ad-
hoc nature of case work where it is often needed to redo and
skip tasks and possibly adapt the set of tasks and their mutual
constraints dynamically [25].

An alternative approach studied by several research groups
is the use of declarative process models [3], [6], [22], [23],
[27], [28], which describes the temporal constraints on process
flows, not how to fulfill them. As part of the PhD project of
the second author within the Trustworthy Pervasive Healthcare
Services (TrustCare) research project [11] we have developed
a declarative process model called Dynamic Condition Re-

sponse Graphs (DCR Graphs) [12]–[14], [17]. The model is
both a generalization of the Process Matrix model [16], [18]
developed by Resultmaker, a danish provider of workflow and
case-management systems and the classical event structure
model for concurrency [30], [31]. DCR Graphs relate to
DECLARE [28], which is a graphical notation that allows
any temporal constraint pattern expressible as Linear-time
Temporal Logic (LTL) formulas. However, instead of allowing
the generality of expressing any constraint expressible in LTL,
DCR Graphs only has a fixed handful of constraints which
can be understood without reference to LTL. Still it maintains
the full expressive power of LTL (described in a follow
up paper). Moreover, it is possible to give an operational
semantics expressed directly as transitions between a novel
type of markings of the tasks. In this way DCR Graphs
combine the declarative view (constraints between tasks) with
the imperative view (markings of tasks) allowing to trace the
constraints even at run-time.

In the present paper we first briefly review the definition
of DCR Graphs in Sec. II and then in Sec. III describe a
case study of applying DCR graphs in the design phase of
the development of a cross-organizational case management
system. In Sec. IV we briefly describe the current status of
our development of tools for supporting design, simulation and
verification of DCR Graphs. Finally, in Sec. VI we outline
challenges identified in the case study and the proposal for
the continued development of the DCR Graphs model, tech-
nologies and tools to make them applicable to component and
model based design of distributed process-aware information
systems.

II. DYNAMIC CONDITION RESPONSE GRAPHS

A Dynamic Condition Response Graph as introduced in [13]
and extended in [14] consists of a set of events, a marking
defining the execution state, and five binary relations between
the events defining the conditions for the execution of events,
the required responses and a novel notion of dynamic inclusion
and exclusion of events. Hereto comes a set of actions, a
labeling function assigning an action to each event, a set of
roles, a set of principals and a relation assigning roles to
actions and principals.
Notation: For a set A we write P(A) for the power set of A.
For a binary relation →⊆ A×A and a subset ξ ⊆ A of A we
write → ξ and ξ → for the set {a ∈ A | (∃a� ∈ ξ | a → a�)}
and the set {a ∈ A | (∃a� ∈ ξ | a� → a)} respectively.

Formally we define a DCR Graph as follows.
Definition 1: A Dynamic Condition Response Graph is a

tuple (E,M,→•, •→,→�,±,Act, l,R,P, as), where

(i) E is the set of events
(ii) M ∈ M(G) is the marking, and M(G) =def P(E) ×

P(E)× P(E)
(iii) →•⊆ E× E is the condition relation
(iv) •→⊆ E× E is the response relation
(v) →�⊆ E× E is the milestone relation

(vi) ± : E × E � {+,%} is a partial function defining the
dynamic inclusion and exclusion relations by e →+ e� if
±(e, e�) = + and e →% e� if ±(e, e�) = %

(vii) Act is the set of actions
(viii) l : E → Act is a labeling function mapping events to

actions.
(ix) R is a set of roles,
(x) P is a set of principals (e.g. actors, persons, processors,

services) and
(xi) as ⊆ (P ∪ Act) × R is the role assignment relation to

principals and actions.
An event labelled with an action, e.g. Create Case, thus

represents an execution of a (human or automated) task/activ-
ity/action Create Case in the workflow process. There may
be several events with the same label, but in all our examples a
label is assigned to a unique event, and thus we simply assume
the set of events to be identical to the set of actions.

By default an event may be executed at any time and any
number of times. However, the marking (defining the run-time
state of the graph) and the five relations defined in (iii)-(vi)
constrain the execution. The marking M = (Ex,Re, In) ∈
M(G) consists of three sets of events, capturing respectively
which events have previously been executed (Ex), which
events are pending responses required to be executed (Re), and
finally which events are currently included (In). Only events
e ∈ In, i.e. that are currently included, can be executed, and
only if all currently included condition events e�, as specified
by the condition relation e� →• e, have been executed and
no currently included events e� which are milestones for e,
as specified by the milestone relation e� →� e, are pending
responses.

When an event e is executed, it is added to the set of
executed events (Ex) of the marking and all response events
e�, as specified by the response relation e •→ e�, are added
to the set of pending responses Re. Moreover, the set of
included events is updated by adding (removing) all events
e� included (excluded) by e as specified by the inclusion
(exclusion) relation e →+ e� (e →% e�).

The execution semantics of DCR Graphs is defined [12],
[14] as a labelled transition system between markings as
follows.

Definition 2: For a DCR Graph G = (E,M,→•, •→,→�
,±, l,Act,R,P, as), we define the corresponding labelled tran-
sition systems T (G) to be the tuple (M(G),M,→⊆M(G)×
L(G)×M(G)) where L(G) =def E× (P× Act× R) is the
set of transition labels, M = (Ex,Re, In) ∈ M(G) is the
initial marking, →⊆M(G)×L(G)×M(G) is the transition
relation given by M� (e,(p,a,r))−−−−−−→ M��

where
(i) M� = (Ex�, Re�, In�) is the marking before transition

(ii) M�� = (Ex� ∪ {e}, Re��, In��) is the marking after
transition

(iii) e ∈ In�, l(e) = a, p as r, and a as r,
(iv) (→•e ∩In�) ⊆ Ex�,
(v) (→�e ∩In�) ∩Re� = ∅,

(vi) In�� = (In� ∪ e→+) \ e→%,
(vii) Re�� = (Re� \ {e}) ∪ e•→,
We define a run (e0, (p0, a0, r0)), (e1, (p1, a1, r1)), . . . of the
transition system to be a sequence of labels of a sequence
of transitions Mi

(ei,(pi,ai,ri))−−−−−−−−−→ Mi+1 starting from the initial
marking. We define a run to be accepting if ∀i ≥ 0, e ∈
Rei.∃j ≥ i.(e = ej ∨e �∈ Inj). In words, a run is accepting if
no response event is pending forever, i.e. it must either happen
at some later state or become excluded.
Condition (iii) in the above definition expresses that, only
events e that are currently included, can be executed, and to
give the label (p, a, r) the label of the event must be a, p
must be assigned to the role r, which must be assigned to
a. Condition (iv) requires that all condition events to e which
are currently included should have been executed previously.
Condition (v) states that the currently included events which
are milestones to event e must not be in the set of pending
responses (Re�). Condition (vi) and (vii) are the updates to
the sets of included events and pending responses respectively.
Note that an event e� can not be both included and excluded by
the same event e, but an event may trigger itself as a response.

In this paper we only consider finite runs. In this case, the
acceptance condition degenerates to requiring that no pending
response is included at the end of the run. This corresponds
to defining all states where Re ∩ In = ∅ to be accepting
states and define the accepting runs to be those ending in
an accepting state. Infinite runs are also of interest especially
in the context of reactive systems and the LTL logic. The
execution semantics and acceptance condition for infinite runs
are captured by mapping to a Büchi-automaton with τ -event
as formalized in [12], [17].

During the case study (Sec. III), we realized the need to
extend our model with nested sub-graphs to allow for modeling
of hierarchical sub structures. To address this need, so-called
Nested DCR Graphs were introduced in [14]. It can be defined
as an incremental extension to DCR Graph given in Def. 1
above as follows.

Definition 3: A Nested dynamic condition response graph
is a tuple (E,�,M,→•, •→,→�,±,Act, l,R,P, as), where
� : E � E is a partial function mapping an event to its super-
event (if defined) and (E,M,→•, •→,→�,±,Act, l,R,P, as)
is a DCR Graph, subject to the condition that the marking
M = (Ex,Re, In) ⊆ atoms(E)×atoms(E)×atoms(E) where
atoms(E) = {e | ∀e� ∈ E. � (e�) �= e} is the set of atomic
events.
A nested DCR Graph can be mapped to a flat DCR Graph
by extending all relations to the sub events and by preserving
only the atomic events. This flattening of a nested DCR Graph
into a DCR Graph is defined formally in [14]. In particular, the
semantics of a Nested DCR Graph is given as the labelled tran-
sition semantics for its corresponding flattened DCR Graph.

III. CASE STUDY: A CROSS-ORGANIZATIONAL CASE
MANAGEMENT SYSTEM

In this section we demonstrate how we have applied DCR
Graphs in practice within a project that our industrial partner

Exformatics carried out for one of their customers. In the
process, we acted as consultants, applying DCR Graphs in
meetings with Exformatics and the customer to capture the
requirements in a declarative way, accompanying the usual
UML sequence diagrams and prototype mock-ups. Sequence
diagrams typically only describe examples of runs, and even
if they are extended with loops and conditional flows they do
not capture the constraints explicitly.

The customer of the system is Landsorganisationen i Dan-
mark (LO), which is the overarching organization for most of
the trade unions in Denmark. Their counterpart is Dansk Ar-
bejdsgiverforening (DA), which is an overarching organization
for most of the Danish employers organizations.

At the top level, the workflow to be supported is that a
case worker at the trade union must be able to create a case,
e.g. triggered by a complaint by a member of the trade union
against her employer. This must be followed up by a meeting
arranged by LO and subsequently held between case workers
at the trade union, LO and DA. After being created, the
case can at any time be managed, e.g. adding or retrieving
documents, by case workers at any of the organizations.

Fig. 1 shows the graphical representation of a simple DCR
Graph capturing these top level requirements of our case study.

Figure 1. Top level requirements as a DCR Graph

Four top-level events were identified, shown as boxes in
the graph labelled Create case, Manage case, Arrange
meeting and Hold meeting. For the top-level events we
identified the following requirements:

1) A case is created by a union case worker, and only once.
2) The case can be managed at the union, LO and DA after

it has been created.
3) After a case is created, LO can and must arrange a

meeting between the union case worker, the LO case
worker and the DA case worker.

4) After a meeting is arranged it must be held (organized
by LO).

The requirements translate to the following DCR Graph role
assignments (shown as ”ears” on the event boxes) and relations
shown as different types of arrows between the events in Fig.
1:

1) Create case has assigned role U and excludes itself.
2) Create case is a condition for Manage case, which has

assigned role U, LO and DA.
3) Create case has Arrange meeting as response, which

has assigned role LO.
4) Arrange meeting has Create case as a condition and

Hold meeting as response, which has assigned role LO.
For example, the U on Create case indicates that only a

case worker at the trade union (U) can create a case, and the U,
LO, DA on Manage case indicate that both the trade union,
LO and DA can manage the case.

The arrow Create case→•Manage case denotes that
Manage case has Create case as a (pre) condition. This
simply means that Create case must have happened before
Manage case can happen. Dually, Arrange meeting has
Hold meeting as response, denoted by the arrow Arrange
meeting•→Hold meeting This means that Hold meeting
must eventually happen after Arrange meeting happens. Fi-
nally, the arrow Create case →%Create case denotes that
the event Create case excludes itself.

In the subsequent meetings, we came to the following
additional requirements:

1) a) To create a case, the case worker should enter meta-
data on the case, inform about when he/she is available
for participating in a meeting and then submit the case.

b) When a case is submitted it may get a local id at the
union, but it should also subsequently be assigned a
case id in LO.

c) When a case is submitted, LO should eventually pro-
pose dates.

2) a) Only after LO has assigned its case id it is possible to
manage the case and for LO to propose dates.

b) Manage case consists of three possible activities (in any
order): editing case meta data, upload documents and
download documents. All activities can be performed
by LO and DA. Upload and download documents can
also be performed by the Union.

3) a) The meeting should be arranged in agreement between
LO and DA: LO should always propose dates first -
and then DA should accept, but can also propose new
dates. If DA proposes new dates LO should accept,
but can also again propose new dates. This could in
principle go on forever.

b) The union can always update information about when
they are available and edit the metadata of the case.

4) a) No meeting can be held while LO and DA are negoti-
ating on a meeting date. Once a date has been agreed
upon a meeting should eventually be held.

These requirements led to the extension of the model
allowing nested events as recalled in the previous section and
given in full detail in [14].

The requirements could then be described by first adding the
following additional events to the graph: A new super event
Edit (E) which has the sub events: Metadata (E-M) and Dates
available (E-D) and is itself a sub event to Create case (CC).

The Create case (CC) event has two sub events: Submit
(SC) and Assign case Id (ACI). The Manage case (MC)
event has two sub events: Edit metadata (EM) and Document
(D), which in turn has two sub events: Upload (D-U) and
Download (D-D). The Arrange meeting (AM) event has four
sub events: Propose dates-LO (PLO), Propose dates-DA
(PDA), Accept LO (ALO) and Accept DA (ADA). The Hold
meeting (HM) event remains an atomic top-level event.

Subsequently, the relations was adapted to the following
(Nested) DCR Graph relations, as shown in Fig 2:

Figure 2. Case Handling Process

1) Edit is a condition to Submit and is assigned role U.
2) Within the Create case superevent:

a) Submit is a condition to Assign case Id and also
requires it as a response.

b) Assign case Id is a condition for Manage case (and
therefore also all it’s sub events).

c) Assign case Id is now the condition for Propose
dates-LO and Submit requires it as a response.

3) Within the Arrange meeting superevent:
a) Arrange meeting still has Hold meeting as response,

but is now also required as a milestone for Hold
meeting

b) Propose dates-LO is a condition for Propose
dates-DA

c) Propose dates-LO includes Accept DA and requires
it as a response

d) Propose dates-DA includes Accept LO and requires
it as a response

e) Accept LO excludes itself and Accept DA
f) Accept DA excludes itself and Accept LO

4) Within the Manage case superevent:

a) Edit metadata has roles LO and DA assigned to it.
b) Upload and Download have been grouped under a su-

perevent Document with roles U, LO and DA assigned
to it.

c) Upload is a condition for Download.
The case handling process described above and shown in

figure 2 can be represented formally as follows.

G = (E,�, M, →•, •→, →�, ±, Act,l, R,P, as), where
Act = atoms(E) = {E-M, E-D, SC, ACI, EM, D-U, D-D, PLO,
PDA, ALO, ADA, HM}
E = {CC, AM, MC, E, D} ∪ atoms(E)
� = {(E-M, E), (E-D, E), (E, CC), (SC, CC), (ACI , CC), (PLO,
AM), (PDA, AM), (ALO, AM), (ADA, AM), (ALO, D-D), (D-U,
D), (D, MC), (EM, MC)}
M = (∅, ∅, atoms(E) \ { ALO, ADA })
→• = {(E, SC), (SC, ACI), (ACI, MC), (ACI, PLO), (D-U, D-D),
(PLO, PDA)}
•→ = {(SC, ACI), (SC, PLO), (PLO, ADA), (PDA, ALO), (AM,
HM)}
→� = {(AM, HM)}
→+ = {(PLO, ADA), (PDA, ALO)}
→% = {(SC, SC), (ALO, ALO), (ALO, ADA), (ADA, ADA),
(ADA, ALO)}
l = {e ∈ atoms(E) | (e, e) }
R = {U, LO, DA} and P= {U, LO, DA}
as = {(SC, U), (E, U), (D, U), (ACI, LO), (EM, LO), (D, LO),
(PLO, LO), (ALO, LO), (HM, LO), (EM, DA), (D, DA), (PDA,
DA), (ADA, DA), (U, U), (LO, LO), (DA, DA)}

During the case study it became clear that it would be
useful to have design tools allowing to quickly create and
simulate models. In the following section we describe the tools
developed so far. In Sec. VI we describe the plans for future
development of tools along with the challenges for extending
the theory identified in the case study.

IV. PROTOTYPE TOOLS

To support designing with DCR Graphs, making the model
available to a wider audience and allow interested parties to
experiment with the notation, we are developing prototype im-
plementations of various tools for DCR Graphs. Development
up to this point includes:

1) A process repository; a service which can be used to store
and retreive DCR processes and process instances.

2) An execution host; a service which can be used to execute
DCR process instances.

3) A windows-based graphical editor; which can be used to
model DCR Graphs and run simple simulations on them.

4) A windows-based desktop client for executing process
instances.

5) A platform independent web client; which can also be
used to execute process instances. In the future we
aim to support the creation of processes through this
webinterface as well. (Fig. 3)

(a) Execution by LO

(b) Execution by DA

Figure 3. Execution in the Web Tool

6) A model checking and runtime verification tool; which
interfaces to SPIN [24] and ZING [21] model checkers
for model checking.

7) A runtime-monitor that can subscribe to the execution
host and verify that the execution of processes adheres to
given properties.

Fig. 4 shows how these tools interact: Usually, a process
modeller will first create a process in the graphical editor (Fig.
5) , which will be stored in the process repository. The process
modeller can use the verification tool to check if his process
adheres to the properties that he desires. Both safety and
liveness properties on models can be verified with the help of
SPIN [24] model checker, where as only safety properties on
DCR Graphs can be verified using ZING [21] model checker,
as ZING does not support liveness properties. A user can
login to the web or desktop-client and select the process for
execution. The client will request that the process repository
start a new instance and the repository will provide the client
with the description of the process and runtime information
on the process instance. Execution requests are made to the
execution server, which handles these requests atomically,

Figure 4. Protoype Architecture

making updates to the instance stored on the repository. If
a request is invalid, the execution server will notify the user
and leave the process instance in its original state. The runtime
monitor can subscribe to the execution server and will get
notified of every execution request. It will then check if the
execution of the process follows the properties described for
it.

Listing 1 shows a brief overview of the XML format of
DCR Graphs that is being used in all prototype tools. A single
XML format is used to contain information about both the
specification and the runtime of a DCR Graph. The resources
section of the specification contains information about roles,
principals, events and actions, whereas the access controls
section contains the mapping of principals and actions to roles.
The last part of the specification contains the binary relations
between the events. Note that the XML format supports
nesting of events and the binary relations in between them
and that flattening of nested events and their relations will be
done at the beginning of executing a DCR Graph.

The second part of the XML format for a DCR Graph
holds the runtime information, which primarily contains the
execution trace and information about the current state. The
execution trace records the actual sequence of events executed
and the current state holds the information about the current
marking which contains sets of included, executed and pending
response events. In addition to the marking, the current state
also holds additional information such as index of state copy,
state accepted to support the acceptance condition for infinite
computations that were characterized by mapping to Büchi-
automata in [12], [17].

Listing 1. Overview of DCR Graph Xml
<? xml v e r s i o n =” 1 . 0 ” e n c o d i n g =” u t f−8” ?>
<d c r g : p r o c e s s x m l n s : d c r g =” h t t p : / / i t u . dk / t r u s t c a r e / d c r / 2 0 1 1 / ”>

<d c r g : s p e c i f i c a t i o n p r o c e s s I d =” ” modelName=” ”>

<d c r g : r e s o u r c e s>
<d c r g : r o l e s></ d c r g : r o l e s>
<d c r g : p r i n c i p a l s></ d c r g : p r i n c i p a l s>
<d c r g : e v e n t s></ d c r g : e v e n t s>
<d c r g : a c t i o n s></ d c r g : a c t i o n s>

</ d c r g : r e s o u r c e s>

<d c r g : a c c e s s C o n t r o l s>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t s></

d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : a c t i o n R o l e A s s i g n m e n t s></

d c r g : a c t i o n R o l e A s s i g n m e n t s>
</ d c r g : a c c e s s C o n t r o l s>

<d c r g : c o n s t r a i n t S e t s>
<d c r g : c o n s t r a i n t S e t t y p e =” c o n d i t i o n ”> . . .</

d c r g : c o n s t r a i n t S e t>
<d c r g : c o n s t r a i n t S e t t y p e =” r e s p o n s e ”> . . .</

d c r g : c o n s t r a i n t S e t>
</ d c r g : c o n s t r a i n t S e t s>

</ d c r g : s p e c i f i c a t i o n>

<d c r g : r u n t i m e p r o c e s s I n s t a n c e I d =” ”>
<d c r g : e x e c u t i o n T r a c e> </ d c r g : e x e c u t i o n T r a c e>
<d c r g : c u r r e n t S t a t e s t a t e I d =” ”>

<d c r g : e v e n t s I n c l u d e d></ d c r g : e v e n t s I n c l u d e d>

<d c r g : e v e n t s E x e c u t e d></ d c r g : e v e n t s E x e c u t e d>

<d c r g : e v e n t s P e n d i n g R e s p o n s e s></
d c r g : e v e n t s P e n d i n g R e s p o n s e s>

<d c r g : s t a t e A c c e p t i n g> </ d c r g : s t a t e A c c e p t i n g>

<d c r g : s t a t e I n d e x> </ d c r g : s t a t e I n d e x>

<d c r g : e v e n t s E n a b l e d></ d c r g : e v e n t s E n a b l e d>

</ d c r g : c u r r e n t S t a t e>
</ d c r g : r u n t i m e>

</ d c r g : p r o c e s s>

The specification section of the XML document for the Case
Handling Process shown in the figure 2 is given in listing 2.

Listing 2. DCRG specification in Xml
<d c r g : s p e c i f i c a t i o n>

<d c r g : r e s o u r c e s>
<d c r g : r o l e s>

<d c r g : r o l e>U</ d c r g : r o l e>
<d c r g : r o l e>LO</ d c r g : r o l e>
<d c r g : r o l e>DA</ d c r g : r o l e>

</ d c r g : r o l e s>
<d c r g : p r i n c i p a l s>

<d c r g : p r i n c i p a l>u</ d c r g : p r i n c i p a l>
<d c r g : p r i n c i p a l>l o</ d c r g : p r i n c i p a l>
<d c r g : p r i n c i p a l>da</ d c r g : p r i n c i p a l>

</ d c r g : p r i n c i p a l s>
<d c r g : e v e n t s>

<d c r g : e v e n t e v e n t I d =” 0 ” name=” C r e a t e c a s e ” a c t i o n I d =”
C r e a t e c a s e ”>

<d c r g : e v e n t e v e n t I d =” 1 ” name=” Submit ” a c t i o n I d =”
Submit ” />

<d c r g : e v e n t e v e n t I d =” 2 ” name=” Ass ign c a s e Id ”
a c t i o n I d =” Ass ign c a s e Id ” />

<d c r g : e v e n t e v e n t I d =” 3 ” name=” E d i t ” a c t i o n I d =” E d i t ”>
<d c r g : e v e n t e v e n t I d =” 4 ” name=” Metada ta ”

a c t i o n I d =” Metada ta ” />
<d c r g : e v e n t e v e n t I d =” 5 ” name=” Dates a v a i l a b l e

” a c t i o n I d =” Da tes a v a i l a b l e ” />
</ d c r g : e v e n t>

</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 6 ” name=” Manage c a s e ” a c t i o n I d =”

Manage c a s e ”>
<d c r g : e v e n t e v e n t I d =” 7 ” name=” E d i t m e t a d a t a ” a c t i o n I d

=” E d i t m e t a d a t a ” />
<d c r g : e v e n t e v e n t I d =” 8 ” name=” Document ” a c t i o n I d =”

Document ”>

<d c r g : e v e n t e v e n t I d =” 9 ” name=” Upload ”
a c t i o n I d =” Upload ” />

<d c r g : e v e n t e v e n t I d =” 10 ” name=” Download ”
a c t i o n I d =” Download ” />

</ d c r g : e v e n t>
</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 11 ” name=” Arrange Meet ing ” a c t i o n I d

=” Submit ”>
<d c r g : e v e n t e v e n t I d =” 12 ” name=” Propose d a t e s−LO”

a c t i o n I d =” Propose d a t e s−LO” />
<d c r g : e v e n t e v e n t I d =” 13 ” name=” Accept LO” a c t i o n I d =”

Accept LO” />
<d c r g : e v e n t e v e n t I d =” 14 ” name=” Accept DA” a c t i o n I d =”

Accept DA” />
<d c r g : e v e n t e v e n t I d =” 15 ” name=” Propose d a t e s−DA”

a c t i o n I d =” Propose d a t e s−DA” />
</ d c r g : e v e n t>
<d c r g : e v e n t e v e n t I d =” 16 ” name=” Hold mee t ing ” a c t i o n I d =”

Hold mee t ing ” />
</ d c r g : e v e n t s>
<d c r g : a c t i o n s>

<d c r g : a c t i o n a c t i o n I d =” C r e a t e c a s e ” />
<d c r g : a c t i o n a c t i o n I d =” Submit ” />
<d c r g : a c t i o n a c t i o n I d =” E d i t ” />
<d c r g : a c t i o n a c t i o n I d =” Metada ta ” />
<d c r g : a c t i o n a c t i o n I d =” Da tes a v a i l a b l e ” />

</ d c r g : a c t i o n s>
</ d c r g : r e s o u r c e s>
<d c r g : a c c e s s C o n t r o l s>

<d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t r o l e−name=”U”>

<p r i n c i p a l>u</ p r i n c i p a l>
</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t>
<d c r g : r o l e P r i n c i p a l A s s i g n m e n t r o l e−name=”LO”>

<p r i n c i p a l>l o</ p r i n c i p a l>
</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t>

</ d c r g : r o l e P r i n c i p a l A s s i g n m e n t s>
<d c r g : a c t i o n R o l e A s s i g n m e n t s>

<d c r g : a c t i o n R o l e A s s i g n m e n t a c t i o n I d =” Submit ”>
<d c r g : r o l e>U</ d c r g : r o l e>

</ d c r g : a c t i o n R o l e A s s i g n m e n t>
<d c r g : a c t i o n R o l e A s s i g n m e n t a c t i o n I d =” Document ”>

<d c r g : r o l e>U</ d c r g : r o l e>
<d c r g : r o l e>LO</ d c r g : r o l e>
<d c r g : r o l e>DA</ d c r g : r o l e>

</ d c r g : a c t i o n R o l e A s s i g n m e n t>
</ d c r g : a c t i o n R o l e A s s i g n m e n t s>

</ d c r g : a c c e s s C o n t r o l s>
<d c r g : c o n s t r a i n t S e t s>

<d c r g : c o n s t r a i n t S e t t y p e =” c o n d i t i o n ”>
<d c r g : c o n s t r a i n t s o u r c e =” 1 ” t a r g e t =” 2 ” />
<d c r g : c o n s t r a i n t s o u r c e =” 3 ” t a r g e t =” 1 ” />

</ d c r g : c o n s t r a i n t S e t>
<d c r g : c o n s t r a i n t S e t t y p e =” r e s p o n s e ”>

<d c r g : c o n s t r a i n t s o u r c e =” 1 ” t a r g e t =” 2 ” />
</ d c r g : c o n s t r a i n t S e t>

</ d c r g : c o n s t r a i n t S e t s>

</ d c r g : s p e c i f i c a t i o n>

All the prototype tools support the basic DCR Graph
notation containing condition, response, include and exclude
relations. We are currently working on extending the prototype
to support milestone relations and nested events. In Fig. 6, 7, 8,
we have illustrated how the execution state of the case-
handling process may be visualized in the simulator in the
future.

The graph in the figure. 6 shows the state after a run where
the union started by creating a case: they edited meta-data,
indicated the dates they were available and submitted. When
LO received the case they assigned their own case ID to it.
Some time later LO proposed possible dates for a meeting
to DA. DA did not agree with these dates and responded by
proposing some of their own. In the graph both Accept LO
and Accept DA are included and have a pending response
because both LO and DA have proposed dates. Because of

Figure 5. The Graphical Editor

Figure 6. Case Handling Process Runtime

these pending responses Hold meeting is disabled. Because
no files have been uploaded to the document yet, Download
is also disabled. The listing 3 shows the runtime information
for the case handling process from the figure 6.

Listing 3. DCRG Runtime in Xml
<d c r g : r u n t i m e p r o c e s s I n s t a n c e I d =” ”>

<d c r g : e x e c u t i o n T r a c e>4 , 5 , 4 , 1 , 2 , 1 2 , 1 5</
d c r g : e x e c u t i o n T r a c e>

<d c r g : c u r r e n t S t a t e s t a t e I d =” S6 ”>

<d c r g : e v e n t s I n c l u d e d>2 , 4 , 5 , 7 , 9 , 1 0 , 1 2 , 1 3 , 1 4 , 1 5 , 1 6</
d c r g : e v e n t s I n c l u d e d>

<d c r g : e v e n t s E x e c u t e d>1 , 2 , 4 , 5 , 1 2 , 1 5</
d c r g : e v e n t s E x e c u t e d>

<d c r g : e v e n t s P e n d i n g R e s p o n s e s>13 ,14 ,16</
d c r g : e v e n t s P e n d i n g R e s p o n s e s>

<d c r g : s t a t e A c c e p t i n g>0</ d c r g : s t a t e A c c e p t i n g>
<d c r g : s t a t e I n d e x>0</ d c r g : s t a t e I n d e x>
<d c r g : e v e n t s E n a b l e d>1 , 2 , 4 , 5 , 7 , 8 , 1 2 , 1 3 , 1 4 , 1 5</

d c r g : e v e n t s E n a b l e d>
</ d c r g : c u r r e n t S t a t e>

</ d c r g : r u n t i m e>

The graph in the figure. 7 shows the runtime state after the
union has uploaded an agenda for the meetings. Note that,
since the union has uploaded a file to the case, Download is
now enabled. But at the same time, Accept LO and Accept
DA still remain the same as the previous graph, as the proposed
dates have not been accepted yet by either LO or DA.

Figure 7. Case Handling Process Runtime After Upload Document

Figure 8 shows the graph representing the state after LO
has accepted one of the dates proposed by DA. Note that both
Accept LO and Accept DA are excluded due to the mutual
exclude relation between them. Even though there is a pending
response on Accept DA, it is not considered relevant as it is
excluded and Hold meeting has become pending because of
the response relation. Continuing by executing Hold meeting
as LO will cause the graph to reach an accepting state, as there
will be no included pending responses.

V. COMPARISON TO OTHER APPROACHES

As already mentioned in the introduction, our approach is
closely related to the work on DECLARE [27], [28]. In partic-
ular the condition and response relations are also considered
in [27], [28], and we have used the same graphical notation
as loc. cit. The crucial difference is that we focus on a few
core constraints allowing to describe the state and operational
semantics of processes as a labelled transitions between simple

Figure 8. Case Handling Process Runtime After Accept Dates

markings consisting of three sets of respectively executed,
included and required events. As also pointed out in [27], [28],
the generality of LTL offers much flexibility with respect to
specifying execution constraints but makes it more complex
to execute processes given in DECLARE and to describe
and understand their run-time state. It typically requires a
translation of the constraints to LTL and subsequent using the
standard mapping of an LTL formula to a Büchi-automaton.
In particular, there is no obvious way to trace the graphical
constraints in DECLARE to the states of the Büchi-automaton.
Moreover, we show in a follow up paper that every set of
traces expressible in LTL (and thus DECLARE) can also be
expressed using DCR Graphs.

We have shown in [18] it is possible, but much more
complex to represent in LTL the interplay between dynamic
inclusion/exclusion and the other relations. Neither this novel
notion of dynamic inclusion/exclusion relations nor nesting are
considered in [27], [28].

The DCR Graphs model also relates to the independent
work on the Guard-Stage-Milestone model [15] by Hull et
al presented as an invited talk at the WS-FM 2010 workshop
and part of the work on artifact-centric business processes [2],
[5], [7].

Finally, BPMN 2.0 includes the ad-hoc sub-process activity
which allows one to group a set of activities that can be
carried out in an ad-hoc way. Fig. 9 below shows how one
may attempt to describe the top level requirements described
in Fig. 1 as a BPMN 2.0 ad-hoc sub-acitivity. According to the
informal description of BPMN 2.0 ad-hoc sub-process activity
in the current BPMN 2.0 specification ([19]) Create case is
a condition for Manage case since the latter cannot start
without the data object case as input, which is produced

Figure 9. BPMN 2.0 ad-hoc sub-process activity

by the former. Moreover, quoting from the specification, the
sequence flow between Create case and Arrange meeting
(and similarly between Arrange meeting and Hold meeting):
”creates a dependency where the performance of the first
Task MUST be followed by a performance of the second
Task. This does not mean that the second Task is to be
performed immediately, but there MUST be a performance
of the second task after the performance of the first Task.”.
This seems exactly to correspond to the response relation in
DCR Graphs. However, when reading the semantics section
of the specification ([19], Sec.13.2.5, 445-446) it appears
that the sequence flow introduces just a standard precondition.
Thus, the specification is not consistent in the description of
sequence flows within ad-hoc sub-activities. Also, it is not
clear how to specify roles on actions (swim lanes seem not to
be allowed within ad-hoc sub-activities) nor how to specify
that an activity within an ad-hoc sub activity only can be
executed once. In particular, Create case can be executed
any number of times in the above process.

VI. CONCLUSIONS AND FUTURE WORK

Our case study showed that the DCR Graphs model is well
suited to give a global description of the temporal constraints
between the individual tasks which is helpful in capturing the
requirements of the overall system.

However, there are still many points for future develop-
ments.

First of all there is the need to extend the expressiveness
of DCR Graphs. In the ongoing PhD project of the second
author we intend to extend the DCR Graphs model to be
able to express relevant features such as multi-instance sub-
graphs (allowing the dynamic creation of sub-graphs repre-
senting dynamic sub process instantiation), time, exceptions
and data. Along with this we intend to continue developing
the technology for model checking and run time verification
and apply it within case studies.

Second, our industrial partner Resultmaker who already
use a declarative process model based on the primitives in
the DCR Graphs model expects to investigate the use of the
formalization to support safe dynamic changes to the process
constraints at run time.

Thirdly, the DCR Graphs model presently describe a global
view of the process. Through our discussions with Exformatics
during the case study we identified the wish to be able to
automatically synthesize distributed views of the process. In
particular, they wanted to be able to derive descriptions of
communication protocols and message exchange between the
individual local components in a distributed implementation
of the system.

Derivations of descriptions of communication protocols
between local components from a global model is been re-
searched for the imperative choreography language WS-CDL
in the work on structured communication-centred program-
ming for web services by Carbone, Honda and Yoshida [4].
Put briefly, the work formalizes the core of WS-CDL as the
global process calculus and define a formal theory of end point
projections projecting the global process calculus to abstract
descriptions of the behavior of each of the local ”end-points”
given as pi-calculus processes typed with session types.

We are currently working on the challenge of synthesizing
a distributed view of a DCR Graph as a set of interacting
DCR Graphs, thus providing a declarative notion of end-point
projections. As a challenge for future work we propose to
provide a formal map between DCR Graphs and imperative
choreographies formalized in the global process calculus [4].

REFERENCES

[1] Active Endpoints, Adobe Systems, BEA Systems, IBM, Oracle,
SAP. Ws-bpel extension for people (bpel4people) version 1.0,
2007. http://www.adobe.us/content/dam/Adobe/en/devnet/livecycle/pdfs/
bpel4people spec.pdf.

[2] Kamal Bhattacharya, Cagdas Gerede, Richard Hull, Rong Liu, and
Jianwen Su. Towards formal analysis of artifact-centric business process
models. In In preparation, pages 288–304, 2007.

[3] Christoph Bussler and Stefan Jablonski. Implementing agent coordina-
tion for workflow management systems using active database systems.
In Research Issues in Data Engineering, 1994. Active Database Systems.
Proceedings Fourth International Workshop on, pages 53–59, Feb 1994.

[4] Marco Carbone, Kohei Honda, and Nobuko Yoshida. Structured
Communication-Centred Programming for Web Services. In 16th
European Symposium on Programming (ESOP’07), LNCS, pages 2–17.
Springer, 2007.

[5] David Cohn and Richard Hull. Business artifacts: A data-centric
approach to modeling business operations and processes. IEEE Data
Eng. Bull., 32(3):3–9, 2009.

[6] Hasam Davulcu, Michael Kifer, C. R. Ramakrishnan, and I.V. Ramakr-
ishnan. Logic based modeling and analysis of workflows. In Proceedings
of ACM SIGACT-SIGMOD-SIGART, pages 1–3. ACM Press, 1998.

[7] Alin Deutsch, Richard Hull, Fabio Patrizi, and Victor Vianu. Automatic
verification of data-centric business processes. In Proceedings of the
12th International Conference on Database Theory, ICDT ’09, pages
252–267, New York, NY, USA, 2009. ACM.

[8] Marlon Dumas, Wil M. van der Aalst, and Arthur H. ter Hofstede.
Process Aware Information Systems: Bridging People and Software
Through Process Technology. Wiley-Interscience, 2005.

[9] Clarence A. Ellis and Gary J. Nutt. Office information systems and
computer science. ACM Comput. Surv., 12:27–60, March 1980.

[10] Clarence A. Ellis and Gary J. Nutt. Workflow: The Process Spectrum.
In Amit Sheth, editor, Proceedings of the NSF Workshop on Workflow
and Process Automation in Information Systems, pages 140–145, May
1996.

[11] Thomas Hildebrandt. Trustworthy pervasive healthcare processes (Trust-
Care) research project. Webpage, 2008. http://www.trustcare.dk/.

[12] Thomas Hildebrandt and Raghava Rao Mukkamala. Declarative event-
based workflow as distributed dynamic condition response graphs. In
Post-proceedings of PLACES 2010, 2010.

[13] Thomas Hildebrandt and Raghava Rao Mukkamala. Distributed dynamic
condition response structures. In Pre-proceedings of International
Workshop on Programming Language Approaches to Concurrency and
Communication-cEntric Software (PLACES 10), March 2010.

[14] Thomas Hildebrandt, Raghava Rao Mukkamala, and Tijs Slaats. Nested
dynamic condition response graphs. In Fundamentals of Software
Engineering Confereence 2011 (to appear), April 2011.

[15] Richard Hull. Formal study of business entities with lifecycles: Use
cases, abstract models, and results. In Proceedings of 7th International
Workshop on Web Services and Formal Methods, volume 6551 of Lecture
Notes in Computer Science, 2010.

[16] Karen Marie Lyng, Thomas Hildebrandt, and Raghava Rao Mukkamala.
From paper based clinical practice guidelines to declarative workflow
management. In Proceedings ProHealth 08 workshop, 2008.

[17] Raghava Rao Mukkamala and Thomas Hildebrandt. From dynamic
condition response structures to büchi automata. In Proceedings of
4th IEEE International Symposium on Theoretical Aspects of Software
Engineering (TASE 2010), August 2010.

[18] Raghava Rao Mukkamala, Thomas Hildebrandt, and Janus Boris Tøth.
The resultmaker online consultant: From declarative workflow manage-
ment in practice to LTL. In Proceeding of DDBP, 2008.

[19] Object Management Group BPMN Technical Committee. Business
Process Model and Notation, version 2.0, 2010. http://www.omg.org/
spec/BPMN/2.0/.

[20] Organization for the Advancement of Structured Information Standards
(OASIS). Web services human task (ws-humantask) specification, ver-
sion 1.1, 2009. http://docs.oasis-open.org/bpel4people/ws-humantask-1.
1-spec-cd-06.pdf.

[21] Microsoft Research. Zing model checker. Webpage, 2010. http:
//research.microsoft.com/en-us/projects/zing/.

[22] Pinar Senkul, Michael Kifer, and Ismail H. Toroslu. A logical framework
for scheduling workflows under resource allocation constraints. In In
VLDB, pages 694–705, 2002.

[23] Munindar P. Singh, Greg Meredith, Christine Tomlinson, and Paul C.
Attie. An event algebra for specifying and scheduling workflows. In
Proceedings of DASFAA, pages 53–60. World Scientific Press, 1995.

[24] Spin. On-the-fly, ltl model checking with spin. Webpage, 2008. http:
//spinroot.com/spin/whatispin.html.

[25] Keith D. Swenson. Mastering the Unpredictable: How Adaptive Case
Management Will Revolutionize the Way That Knowledge Workers Get
Things Done. Meghan-Kiffer Press, 2010.

[26] Wil M. P. van der Aalst and S Jablonski. Dealing with workflow change:
Identification of issues and solutions. International Journal of Computer
Systems, Science, and Engineering, 15(5):267–276, 2000.

[27] Wil M. P. van der Aalst, Maja Pesic, and Helen Schonenberg. Declarative
workflows: Balancing between flexibility and support. Computer Science
- R&D, 23(2):99–113, 2009.

[28] Wil M.P van der Aalst and Maja Pesic. A declarative approach for
flexible business processes management. In Proceedings DPM 2006,
LNCS. Springer Verlag, 2006.

[29] W3C. Web services choreography description language, version 1.0,
2005. http://www.w3.org/TR/ws-cdl-10/.

[30] Glynn Winskel. Event structures. In Wilfried Brauer, Wolfgang Reisig,
and Grzegorz Rozenberg, editors, Advances in Petri Nets, volume 255
of Lecture Notes in Computer Science, pages 325–392. Springer, 1986.

[31] Glynn Winskel and Mogens Nielsen. Models for concurrency. pages
1–148, 1995.

[32] M. D. Zisman. Representation, Specification and Automation of Office
Procedures. Philadelphia, Pa.: University of Pennsylvania, Wharton
School, Department of Decision Sciences, Ph.D. Thesis, Sep, 1977.

