
The Resultmaker Online Consultant:
From Declarative Workflow Management in Practice to LTL ∗

Mukkamala Raghava Rao
Industrial PhD student

IT University of Copenhagen &
Resultmaker A/S

rao@resultmaker.com

Thomas Hildebrandt
IT University of Copenhagen

Rued Langgaardsvej 7
2300 Copenhagen, Denmark

hilde@itu.dk

Janus Boris Tøth
Resultmaker A/S,

Vester Farimagsgade 3,
1606 Copenhagen, Denmark

jbt@resultmaker.com

Abstract

We present the process model employed in the Result-
maker Online Consultant (ROC) workflow management sys-
tem as an example of a declarative workflow language used
in practice. We describe and formalize the key primitives
of the ROC process model as Linear time Temporal Logic
(LTL) formulas, in line with a recent proposal of van der
Aalst and Pesic to use LTL as the foundation for flexible
declarative process languages. The work is one of the first
steps in a recently initiated research project (TrustCare)
aiming at contributing to the foundations for workflow man-
agement for trustworthy pervasive healthcare services by
combining research in formal process models, pervasive
user interfaces, and development of research based proto-
type extensions to the ROC workflow management system.

1 Introduction

Research in the flexibility of workflow management sys-
tems deals with the problems of how to maintain freedom to
select as many different flows as possible in process speci-
fications, how to accommodate dynamic changes of work-
flow processes, and the ability to easily reuse process de-
scriptions in different contexts [1, 2].

As pointed out in [3] most work on flexibility of work-
flow has so far focussed on imperative process languages, in
particular languages based on a notion of flow graphs as em-
ployed in the majority of the currently used business process
and workflow management systems. However, the authors

∗This work was funded in part by the Danish Research Agency (grant
no.: 2106-07-0019, no.: 274-06-0415), Resultmaker A/S, and IT Univer-
sity of Copenhagen (the TrustCare and CosmoBiz projects). To appear in
Proceedings of 1st International Workshop on Dynamic and Declarative
Business Processes, 2008. Copyright IEEE.

argue that the use of imperative process languages often
leads to over specification, which imposes too many con-
straints on the flows and consequently amplifies the need
for changes to the specified process. Based on this obser-
vation, the authors propose a paradigm shift replacing the
imperative process languages with declarative process lan-
guages, in which one specifies the constraints between work
activities rather than exactly how these constraints are re-
solved. Concretely, they propose the open languages Con-
Dec [3] and DecSerFlow [4], which are based on the idea
of using pattern templates for Linear time Temporal Logic
(LTL) formulas [5, 6] accompanied by a graphical notation
as the primitives of a flexible and extensible declarative pro-
cess language.

In the present paper we report on our initial work on for-
malizing the Process Matrix, which is the patented1 declar-
ative process model employed in the Resultmaker Online
Consultant (ROC) workflow management system. In line
with the approach proposed by van der Aalst and Pesic we
describe and formalize the key primitives of the Process
Matrix as LTL formulas. The work is one of the very first
steps of a recently initiated research project on Trustworthy
Pervasive Healthcare Services (TrustCare) [7]. The aim of
the project is to contribute to the foundations of workflow
management systems for trustworthy pervasive healthcare
services by combining research in formal process models,
logic and domain specific languages, research in pervasive
user interfaces, and prototype development of workflow
management systems at Resultmaker. The research will in
particular focus on uses of formal process models as a foun-
dation for workflow management systems supporting trust-
worthy dynamic composition and changes of processes, and
the prototype development will involve a re-implementation
of the ROC using the knowledge gained from the formaliza-
tion.

The ROC workflow management system has evolved

1US Patent # 6,895,573

from Resultmaker’s industrial experiences obtained during
the process of authoring solutions for the Danish public sec-
tor, and has been used with success in practice for several
years. It is based on a shared data architecture and elec-
tronic forms (updating the shared data) as the key basic ac-
tivity. Hereto comes activities for connecting to external
systems, inviting participants and digitally signing data, that
we will ignore in the present paper.

The key primitives of the ROC Process Matrix is that of
sequential and logical predecessor relations between activi-
ties A and B, along with activity conditions and dependency
expressions for each activity. That A is a sequential prede-
cessor of B informally means that in each instance of the
process, activity A (for that instance) must be executed be-
fore B (for that instance) can be executed. Note that an ac-
tion by default can be executed any number of times within
an instance as long as it is executed at least once. If A is
declared as a logical predecessor of B, it informally means
that it is a sequential predecessor with the additional con-
straint that B must be re-executed at some point after any
re-execution of A. A prototypical example of logical prede-
cessor is when A is the activity of filling out a loan or grant
application and B is the activity of evaluating or signing
it. Activity conditions and dependency expressions refer to
values of variables in the shared data store and are dynam-
ically evaluated after each step of the workflow. An activ-
ity condition determines if an actity is currently included
in the workflow instance (i.e. it is active) and a change in
a dependency expression determines that an activity must
be re-executed. Activity conditions make it very easy to
reuse a process description for a different purpose in a dif-
ferent variant: One just adds a new boolean variable to the
shared data store and use it to toggle the inclusion or ex-
clusion of activities. Dependency expressions allow for a
description of logical dependency similar to the logical pre-
decessor constraint, but are based on changes in data rather
than re-executions of activities and thus allow declaring a
more fine-grained dependency. In the example of filling
out a grant application, one may e.g. use a dependency
expression to declare that the signature activity has to be
re-executed if the data in the budget is changed, but not if
the name of the project is changed, even though both values
are entered in the grant application form.

We believe that the study in this paper forms the start-
ing point for a valuable cross-fertilization between devel-
opment of workflow management systems in practice and
research in theoretical computer science. The predecessor
primitives of the Process Matrix are similar to the primi-
tives considered by van der Aalst and Pesic, and can thus be
quite naturally formalized as LTL formulas. However, the
use of activity conditions suggests in our opinion interesting
variants of the constraint templates given for the ConDec
and DecSerFlow languages. On the other hand, the formal-

Figure 1. The Online Consultant Architecture.

ization also suggests extensions to the Process Matrix. In
particular one may follow the approach in DecSerFlow and
consider allowing designers to specify new process primi-
tives as LTL formulas based on an open set of templates.

The structure of the paper is as follows. In Sec. 2 we
informally describe the ROC Architecture and the Process
Matrix using a fictive loan application process as example.
In Sec. 3 we recall the approach of the DecSerFlow lan-
guage and formalize the key primitives of the ROC Process
Matrix as LTL formulas. We end in Sec. 4 by a conclusion
and outlining future work.

2 The Online Consultant

In this section we introduce the ROC workflow architec-
ture and key components, in particular the declarative prim-
itives of the ROC process model, referred to as the Process
Matrix.

2.1 The Online Consultant Architecture

ROC is a user-centric workflow management system
based on a shared data store and so-called eForms as its
principal activities. An eForm is a web based questionnaire
presented to the users of the system by the front end Form
engine. The fields in the eForms are mapped to variables in
the shared data store.

Fig. 1 shows the overall architecture of ROC. The Run-
time services constitute components that execute a ROC
process instance, while the Design-time services constitute
e.g. tools for process description and design of eForms.
ROC has its own eForm designer tool, but also supports
forms developed in Microsoft InfoPath.

2.2 Process Modeling Primitives

Below we describe the key process modeling primitives
used in ROC.
Activities: The ROC has 4 pre-defined activity types.
eForm Activity: As described above, it is the principal ac-
tivity of ROC. The data filled in by the users will be avail-
able to all activities of the workflow instance through the
shared data store. eForms are appended to ROC activities in
process definitions and each activity can contain only one
eForm. At run-time when an eForm activity is executed,
the corresponding eForm will be displayed to the user for
human interaction. If any of the variables or activities an
eForm activity A depends on is changed by another activity
while the form is being displayed (and edited) by the user,
the activity A will be skipped when the form is attempt to
submit by the user and the user will be notified. In this way
eForm activities are guaranteed to run atomically and in iso-
lation.
Invitation Activity: This type of activity attaches a role to an
external user (identified by an email address) and sends him
an invitation link to the process instance via email notifica-
tion.
Signing Activity: In order to provide authentication for the
data filled in by the users, the ROC uses Signing Activity.
The user data on eForms will be digitally signed by using
XML digital signatures syntax [8] and users digital identity
certificates. A single signing activity supports signing of
data from multiple eForms.
External Activity: Via a general script engine it is possible
to connect to any external system, e.g. for automated tasks.
In the remainder of the paper we will only consider eForm
activities.
Transactions: A ROC Transaction holds a group of activ-
ities to be executed in transaction mode. The transactions
differ from standard transactional semantics in that they are
long running and cannot be rolled back. Instead, as also
found in web-service orchestration languages such as WS-
BPEL, they can have a compensating logic to be executed
in case a transaction has to be aborted. Transactions can
be either signed or unsigned. Signed transactions involves
signing the data using digital certificates by single/multiple
parties containing many eForms. We will leave the fur-
ther investigation and formalization of transactions for fu-
ture work.
Resources/Roles: ROC has a simple resource model that
uses Roles to define allowed behaviour of different users
within the system. Each Role is assigned an access right for
each activity of a workflow. The possible access rights are
Read (R), Write (W) and Denied (D). The Read access is
the default access right that allows a user with the particular
role to see the data of an activity. Write access right allows
the user to execute an activity and also to input and submit

data for that activity. A Denied access right has the effect of
making the activity invisible to the user. As for transactions,
we will leave the formalization of Roles for future work.

Activities are executed by default at least once, but pos-
sibly many times in a process instance. The state of ROC
records whether an activity has been executed or not in an
instance. If an activity has state executed, its state can be
reset to not executed under certain circumstances described
below.
Control Flow Primitives: ROC contains the following con-
trol flow primitives which controls the execution of process
instances.
Activity Condition: Every activity in ROC has an attached
activity condition. An activity condition is a boolean ex-
pression that reference variables from the shared data store.
When this condition evaluates to true, the activity is in-
cluded in the workflow instance for execution. If the condi-
tion evaluates to false the activity will be skipped from the
list of activities stacked for execution. The boolean vari-
ables used in activity conditions are referred to as purposes.
The reason for this terminology is that activity conditions
makes it easy to reuse a process description for a different
purpose in a different variant: One just adds a new purpose
variable and use it in activity conditions to toggle the inclu-
sion of relevant and exclusion of irrelevant activities. Activ-
ity Conditions are re-evaluated whenever necessary during
the execution of an instance, so the inclusion of an activity
in the workflow can be changed within in the lifetime of the
workflow instance. As described below, changing an activ-
ity from non-active to active may influence the state of other
activities that logically depend on the activity.
Sequential Predecessors: If A is declared to be a sequen-
tial predecessor of B then in any process instance, activity
A must be executed before B can be executed. However,
the sequential predecessor has only effect if the predeces-
sor activity A is included in the workflow instance as per
its activity condition. That is, if the activity condition for
A is false at a certain point of time, then activity B can be
executed even if A is a sequential predecessor of B and has
state non-executed. If activity A becomes part of the work-
flow instance after B has been executed (e.g. because the
activity condition for activity A changes from false to true),
it will not affect the execution status of activity B.
Logical Predecessors: If an activity A is declared to be a
logical predecessor of acticity B, then A is a sequential pre-
decessor of B, but in addition, if activity A is re-executed,
reset, or becomes part of the workflow after activity B has
been executed and activity B is active at the time, then ac-
tivity B is also reset, and thus must be re-executed at a later
time (unless it stays in-active for the rest of the instance
lifetime, i.e its activity condition continuously evaluates to
false). Note that activity resets in this way can propagate
through a chain of (currently active) logical predecessors.

As also mentioned in the introduction the Process Ma-
trix model includes an additional advanced feature called
dependency expressions. A dependency expression is a set
of expressions attached to an activity. Like activity condi-
tions, dependency expressions can also contain references
to variables in the shared store. However, where an activity
condition evaluates to a boolean value, a dependency ex-
pression can evaluate to any value, and any change in the
value of a dependency expression associated to an activity
will reset the activity state to non-executed.

2.3 The Process Matrix

There is yet no formal graphical notation for ROC work-
flow processes. However, there is a guideline for how to
identify and specify activities, roles/actors and constraints
in a tabular format. This table is referred to as the Process
Matrix, which is also used as name for the process model.
Practical experience has shown that the guideline and the
Process Matrix have been useful to extract process descrip-
tions from domain experts.

Below we describe a small fictive example of a loan ap-
plication process represented by the Process Matrix shown
in Fig. 2 .2 Each row of the matrix represents an activ-
ity of the process: Filling in the application (Application),
Registering customer information(Register Customer Info),
Approval of the application (Approval 1 and 2), Payment,
Express Payment, Rejection and Archive. The columns are
separated in 3 parts: The first set of columns describes the
access rights for the different roles (Applicant (App), the
Case Worker (CW) and Manager (Mgr) in the figure). The
Roles columns indicate that the applicant can fill out appli-
cations, but the case worker and manager can only read the
content of the application. Everyone can register customer
information, but only the case worker can perform approval
1 and only the manager can perform approval 2, and both
approval steps are invisible to the applicant. The remain-
ing actions can only be performed by the case worker - they
can be read by the manager and applicant, except for the
archiving which is invisible to the applicant. The next row
describes the predecessor constraints, where we indicate by
a ∗ that the predecessor is a logical predecessor. That is, ac-
tivity Approval 1 has activity Register Customer Info as se-
quential predecessor and activity application as logical pre-
decessor. Thus, the customer may at any time re-submit the
basic info (e.g. address and phone number) without caus-
ing a re-execution of the approval activity. However, it the
application is changed the approval must also be carried out
again. (If only changes in the amount given in the Applica-
tion activity should cause Approval to be re-executed, one
could make the application a sequential predecessor of the

2The example is available for online demonstration at
〈www.resultmaker.com〉.

Activities Roles
Prede- Activity

App CW Mgr cessors Condition
1 Application W R R

2
Register
Customer
Info

W W W

3 Approval 1 D W R
∗
1,2

4 Approval 2 D R W
∗
1,2 ¬Rich

5 Payment R W R
∗
3,
∗
4

¬Hurry∧
Accept

6 Express
Payment R W R

∗
3,
∗
4

Hurry ∧
Accept

7 Rejection R W R
∗
3,
∗
4 ¬Accept

8 Archive D W R
∗
5,
∗
6,
∗
7

Figure 2. Loan application Process Matrix

Approval activities, but add the amount of the loan as a de-
pendency expression to the Approval activities). Finally,
the last row describes the activity condition. For instance,
the condition Hurry∧Accept of activity Express Payment
indicates that the boolean values Hurry and Accept in the
shared data store must both be set to true for this activity to
be included in the flow. To fit the table within one column of
the paper we have left out a column stating which eForm is
attached to an activity, and which values in the shared data
store are accessed and changed by the eForm: The Applica-
tion form changes the variables Rich and Hurry, and the
Approval forms toggle the Accept variable. Concretely, in
the online example of the loan application process the pur-
poses Rich and Hurry are set by radio buttons in the eForm
attached to the Application activity in step 1, and the pur-
pose Accept is toggled in the eForms attached to Approval
1 and Approval 2.

The Activity Conditions in the last column depend on
the purposes Rich, Hurry and Accept. A rich applicant only
needs an approval from the case worker, while a poor appli-
cant also needs an approval from the manager in the bank. If
the purpose Hurry is set to true, the application is treated as
an express payment. The result is that the Express payment
activity (step 6) is included and not the Payment activity
(step 5). Conversely, if the purpose Hurry is set to false,
the the (normal) Payment activity in step 5 is included and
not the express payment activity. Both payment activities
require the purpose Accept to be true.

2.4 Process Execution

In Fig. 3 we show a possible state of the system during
an instance of the workflow where a poor applicant applies

Activities Activity Activty
Condition Status

1 Application true executed

2
Register
Customer
Info

true executed

3 Approval 1 true can start
4 Approval 2 true (¬Rich) executed

5 Payment true can not start
(wait for {3})

6 Express
Payment false(¬Hurry) inactive

(¬Hurry)

7 Rejection true

can not
start (wait
for {3} ∧
¬Accept)

8 Archive true

can not start
(wait for
({3} ∧ {4})∨
({3} ∧ {7}))

Figure 3. The Process Matrix at Run Time.

for a non-express loan. The purpose Hurry is set to false
thus the activity Express Payment is excluded. The activity
condition for all other activities except activity Express Pay-
ment is set to true and they are included for execution, i.e.
the activity Approval 2 is included because the purpose Rich
evaluates false. The activities Application, Register Cus-
tomer Info, Approval 2 have already been executed and their
activity status is thus executed. The activity Approval 1 is
ready for execution, but it has not started executing. Note
that the activities Payment and Rejection can not be started
because of their predecessors, but only one of them will be
executed in future as the value of purpose Accept makes the
other activity to be excluded. The activity Archive will be
executed eventually after all its predecessors, as it does not
have any purposes attached to it. As mentioned above, ac-
tivity conditions will be re-evaluated after execution of each
activity which makes the dynamic inclusion or exclusion of
activities possible at runtime.

Note that the registration of customer information can
be done either before or after the application, and can be
redone arbitrarily often without affecting any of the other
steps.

2.5 Process Matrix vs Flow Charts?

We conclude the presentation of the Process Matrix by
a very brief comparison of the Process Matrix for the loan
application to a typical flow chart description as shown in
Fig. 4. Note that the diagram only shows a possible descrip-
tion of the loan process that one may come up with during

design - it is not equivalent to the process described by the
Process Matrix. In particular, it assumes that every activ-
ity is carried out once. To model the flexibility provided in
the Process Matrix, that every step can be re-executed, one
would need loops back from every activity to any preceding
activity. Clearly, adding these arcs to the flow chart diagram
would make it much more complex.

Figure 4. Example in Flow chart.

3 Formalizing the Online Consultant in LTL

In this section we provide formalizations of the key prim-
itives of the Online Consultant process matrix described in

Sec. 2 in terms of Linear time Temporal Logic (LTL) [5, 6]
formulas. First we briefly recall LTL and the approach
in [4, 3].

3.1 Executable LTL for Workflow

LTL is a temporal logic extending propositional logic to
infinite sequences of states. This is done using the temporal
modal operators OP (in the next state of the sequence for-
mula P holds), �P (in the current and all of the following
states of the sequence formula P holds), ♦P (in the current
or at least one of the following states of the sequence for-
mula P holds), and Q U P (in the current or at least one
of the following states of the sequence formula P holds and
formula Q holds in all states until that state is reached).

LTL has been extensively used as property language for
automatic verification of reactive systems, also referred to
as model checking [9]. The basic principle of model check-
ing is to use an automatic tool to check if a system, usually
described by an automaton, satisfies a property specified in
a property language, which is often a temporal logic. In this
case one say that the system is a model of the property.

The key idea of the paradigm shift proposed in [4] is
to turn this around and use the declarative, temporal logic
language to provide the system (workflow) definition. The
system is then defined as a formula that characterizes the
valid completed sequences of activities, e.g. that in a com-
pleted instance execution a certain activity must always oc-
cur before some other activity.3 In acknowledgement to the
fact that LTL formulas may be too difficult to understand
for process designers, the authors in [4] propose to use so-
called constraint template formulas, also referred to as poli-
cies or business rules. These templates are further equipped
with a graphical notation.

It is worth noting, that a similar paradigm shift was in
fact also proposed by Gabbay in [10] where he suggests to
use LTL formulas as execution language for interactive sys-
tems. Moreover, Gabbay showed that one could ease the de-
scription of systems by using LTL extended with past time
modalities by proving that any LTL formula with past time
modalities can be rewritten to an equivalent (but in the worst
case exponentially longer [11]) LTL formula with only fu-
ture time modalities. We exploit the use of past time modal-
ities below to give more succinct formalizations of the ac-
tivity resets in ROC.

It is important to recall, that the difference between using
a declarative language as opposed to an imperative language
is on the ease and flexibility of expression and not on expres-
siveness: Any LTL formula can be automatically translated
to an equivalent finite automaton over infinte sequences and

3Note that a partial execution sequence need not satisfy the formula,
as long as it is possible to complete the sequence in a way that makes the
formula satisfied.

vice versa [6]. The point made in [4, 10] is that one may use
this correspondence to let the workflow engine construct an
automaton from the declarative LTL description that can be
used for execution of the process.

As described in the previous section the Process Matrix
employed in ROC is in fact an example of a declarative
workflow language used in practice. Our aim in the follow-
ing is to give a translation from the Process Matrix model to
LTL, which translates any Process Matrix process M into
an LTL formula [[M]] such that the sequences of states for
which [[M]] is true is exactly the sequences of states that
constitute valid executions of the process M . Concretely,
our formalization is defined as extensions to the LTL tem-
plate formulas given in [4, 3]. As in [4, 3] we assume a
discrete time model where any step between two consec-
utive states in the sequence corresponds to the execution
of one activity in the workflow, and we deal with the fact
that workflow executions are finite and LTL is interpreted
over infinite sequences by using the standard stutter exten-
sion, assuming that the finite workflow executions are ter-
minated by an infinite sequence of steps with no change
in the state. The basic propositional formulas we employ
will be boolean formulas over propositions on the state
space and the current activity. In particular, the proposition
(act == A) is true in a state if the last executed activity is
A.

A basic example of an LTL template in the DecSer-
Flow language is the constraint template existence(A :
activity) formalized as ♦(act == A) in LTL. It simply
states that there exists a step in which activity A is carried
out.

An example of a so-called relation formula [4] is the
constraint precedence(A : activity,B : activity) which
states that an activity B is preceded by an activity A, i.e.
the activity B can not be executed before activity A has
been executed. This template formula uses the existence
template as a sub formula and is expressed in LTL as

existence(B) =⇒ (!(act == B) U (act == A))

where ! denote the the boolean negation. Reading the for-
mula, it expresses that if there exists a state in the sequence
in which B is carried out then there exists a state in the se-
quence in which A is carried out for which B is not carried
out in any of the preceding states. This is equivalent to the
intended property that the activity B can not be executed
before activity A has been executed.

Another example of a relation formula is the constraint
response(A : activity,B : activity) which expresses that
whenever the activity A is executed then B must also be
executed after it. This formula is expressed in LTL as

�((act == A) =⇒ existence(B))

From the response and precedence templates one may

build composite relation templates, such as the template
succession(A : activity,B : activity) expressed in LTL
simply as a conjunction of the two templates:

response(A, B) ∧ precedence(A, B)

The formula expresses that every execution of activity A
must be followed by an execution of B and any execution
of B must be preceded by an execution of A.

The reader may already have noticed similarities with the
primitives in the Process Matrix. In the following section
we will see that the Process Matrix primitives can indeed
be formalized similarly to the templates given above, but
with some interesting variations due to the use of activity
and dependency conditions. We do not consider the roles
nor dependency expressions.

3.2 From the Process Matrix to LTL

To define the translation from the Process Matrix model
to LTL we describe how the individual primitives can be
expressed as templates in LTL. The formalization of a Pro-
cess Matrix workflow M will then be an LTL formula [[M]]
which is a set of formulas in conjunction obtained by in-
stantiating the templates according to the entries in the Pro-
cess Matrix. Our aim is that [[M]] is true exactly for the
sequences of states that constitute valid executions of the
process M . However, we leave for future work to evaluate
the correctness of the formalization.

In the following we assume a Process Matrix workflow
M . We let A and B range over activities in M and write
actcon(A) for the activity condition specified in the Process
Matrix M for an activity A.

The first formula used for the formalization is then the
LTL formula act include(A : activity) given by

�(O(act == A) =⇒ actcon(A))

It expresses that an activity A can only be executed in the
next step if it is included in the present, i.e. its activity con-
dition is true. The formula act include(A) is then included
in the conjunction in [[M]] for every activity A in M .4

To formalize the remaining ingredients we define a few
templates used as sub formulas. The first such template is
act including(A, B) = (act == A) ∧ actcon(B) which
expresses that activity A is executed and at the same time
the activity B is included in the process (because the acitivty
condition for B is true).

The second template is
existence act including(A, B) =
♦act including(A, B) which extends the existence
template for DecSerFlow to express that an activity A is

4We also include the formula
V

A∈M !(act == A) in the conjunction
stating that no activities are carried out before the initial state.

eventually executed and at the same time the activity B is
included in the process.

We now go on to formalize the control flow primitives of
the Process Matrix.
Sequential Predecessor: The sequential predecessor con-
straint is similar to the precedence formula in DecSerFlow
described above, except for the use of the activity con-
dition in the Process Matrix. We define the constraint
template sequential predecessor(A : activity,B :
activity) stating that A is a sequential predecessor of B
by the LTL formula existence act including(B, A) =⇒
(!act including(B, A) U (act == A)). Let A <M B de-
note that A is a sequential predecessor of B in M . We then
include the formula sequential predecessor(A, B) in the
conjunction [[M]] for any pair A <M B.
Activity Reset: To formalize the logical predecessor con-
straint, we need to formalize the somewhat complex han-
dling of activity resets in ROC. We want to define a template
reset(A) which expresses that the activity A is being reset
in the current state. Here we exploit the past time modality
Since written as Q S P and the past time modality YP. The
Since modality is the dual of the until modality and is true
if in the current or at least one of the preceeding states the
formula P holds and formula Q holds in all states since that
state. The past time modality YP is true if P holds ”Yes-
terday”, i.e. in the previous state. As described in [10] we
can translate the formalization including past time modali-
ties into a pure present and future time formula.

Let A
∗
<M B denote that A is a logical predecessor

of B in M . If there is a chain of logical predecessors
A0

∗
<M A1

∗
<M

∗
<M Ak, for which actcon(Ai)

is true for i ∈ {0, . . . , k}, i.e. the activities Ai are all in-
cluded in this state, and the first activity A0 is executed
or changes from not-included in the previous state to in-
cluded in this state, then the activity Ak will be reset in
the Process Matrix. To formalize this, first define the tem-
plate included(A : activity) = Y!actcon(A)∧actcon(A)
and define chain(A0, A) = {[A0, A1, . . . , Ak] | A0

∗
<M

A1

∗
<M

∗
<M Ak = A}, i.e the set of all chains

of logical predecessors with A0 as first and A as the last
activity. Then we define the template resetchain(A) =∨

B∈M,c∈chain(B,A)(
∧

A′∈c actcon(A′) ∧ (included(B) ∨
(act == B)).

Finally, we define the template reset(A) =!(act ==
A) S resetchain(A), which we will use below.
Logical Predecessor: Logical Predecessor is a strength-
ening of the Sequential Predecessor constraint. The
template reset(A) allows us to formalize the template
logical predecessor(A : activity,B : activity) in LTL
as sequential predecessor(A, B) ∧ �

(
reset(A) =⇒

sequential predecessor(A : activity,B : activity)
)

We
then include the formula logical predecessor(A, B) in the

conjunction [[M]] for any pair A
∗
<M B.

Activity Execution: The final part of the formalization, is
to express when an activity should be executed. We use the
template executed(A : activity) =!reset(A) S (act ==
A), i.e. using the template reset(A) and the since modality
to describe that an activity has status executed if there exist a
state in the past where it is executed and it has not been reset
since. The execution formula can then finally be formalized
as

(♦�executed(A)) ∨ (♦�!actcon(A))

which is included in the conjunction [[M]] for every activity
A in M . The formula expresses that either the activity A
has status executed continuously in some future state, or it
is excluded from the process. (Recall that we interpret LTL
over infinite sequences and assume the execution sequences
of ROC to be terminated by an infinite sequence of states
with no change)

This concludes our formalization of the Process Matrix.

4 Conclusion and Future Work

We have presented the process modeling primitives em-
ployed in the Resultmaker Online Consultant workflow
management system as an example of a flexible declara-
tive workflow language used in practice. We formalized
the core primitives (sequential predecessor, logical prede-
cessor, and activity conditions) as LTL formulas along the
lines of the recently proposed approach in [4, 3]. The some-
what complex propagation of activity resets were the most
challenging part. The use of activity conditions suggests, in
our opinion, interesting variants of the constraint templates
given for the ConDec and DecSerFlow languages. We want
to remark that the formalization has not yet been validated
experimentally, which we plan to do as the next step to sup-
port the claim that the formalization is really describing the
valid execution traces. One should be aware that other tem-
poral logics for specifying computations exists, notably the
Computational Tree Logics CTL* and CTL [9], which are
so-called branching time logics that differ from LTL with
respect to the ability to specify when decisions are made
in a process. We leave for future work the possible uses
of branching time logics and primitives derived from such
logics for specifying work flow processes.

We believe that the study in this paper forms the starting
point for a valuable cross-fertilization between development
of workflow management systems in practice and research
in theoretical computer science. The formalization suggests
extensions to ROC and the Process Matrix, e.g. allowing
designers to specify new process primitives as LTL formu-
las based on an open set of templates as in ConDec and
possibly using similar graphical notation. As future work
we will research how the formalization can be used to sup-

port prototype implementations of ROC, and extensions to
allow safe dynamic changes and compositions of processes.

Future work will also include studies of the use of the
ROC Process Matrix for healthcare services as initiated
in [12]. In practice, clinical guidelines are right now being
implemented using the Process Matrix as part of a Polish
Electronic Health Record project (EHR-PL).

References

[1] Heinl, P., Horn, S., Jablonski, S., Neeb, J., Stein, K.,
Teschke, M.: A comprehensive approach to flexibility
in workflow management systems. In: In Proceedings
of WACC ’99, ACM Press (1999) 79–88

[2] van der AAlst, W.M.P., Jablonski, S.: Dealing with
workflow change: identification of issues and solu-
tions. International Journal of Computer Systems Sci-
ence & Engineering 15(5) (2000) 267–276

[3] van der Aalst, W., Pesic, M.: A declarative ap-
proach for flexible business processes management.
In: In Proceedings of Workshop on Dynamic Process
Management (DPM 2006). Volume 4103 of LNCS.,
Springer Verlag (2006) 169–180

[4] van der Aalst, W., Pesic, M.: DecSerFlow: Towards
a truly declarative service flow language. In Bravetti,
M., Nunez, M., Zavattaro, G., eds.: In Proceedings of
Web Services and Formal Methods (WS-FM 2006).
Volume 4184 of LNCS., Springer Verlag (2006) 1–23

[5] Pnueli, A.: The temporal logic of programs. In: In
Proceedings of 18th IEEE FOCS. (1977) 46–57

[6] Sistla, A., Vardi, M., Wolper, P.: Reasoning about
infinite computation paths. In: In Proceedings of 24th
IEEE FOCS. (1983) 185–194

[7] Hildebrandt, T.: Trustworthy pervasive healthcare
processes (TrustCare) research project. Webpage
(2008) 〈http://www.trustcare.dk/〉.

[8] D. Eastlake, J. Reagle, D.S.: Rfc 3275: Xml-signature
syntax and processing (2002) 〈http://www.
ietf.org/rfc/rfc3275.txt〉.

[9] M.Clarke, E., Grumberg, O., A.Peled, D.: Model
Checking. MIT Press (1999)

[10] Gabbay, D.M.: The declarative past and imperative
future: Executable temporal logic for interactive sys-
tems. In: Temporal Logic in Specification, London,
UK, Springer-Verlag (1987) 409–448

[11] Laroussinie, F., Markey, N., Schnoebelen, P.: Tem-
poral logic with forgettable past. In: In Proc. 17th
IEEE Symp. Logic in Computer Science (LICS’2002),
Copenhagen, Denmark, IEEE Computer Society Press
(2002) 383–392

[12] Lyng, K.M., Hildebrandt, T., Mukkamala, R.R.: From
paper based clinical practice guidelines to declarative
workflow management. In: In Proc. of 2nd Interna-
tional Workshop on Process-oriented information sys-
tems in healthcare (ProHealth 08), Milan, Italy (2008)

